ORIGINAL ARTICLE

Synthesis and Characterization of some new Matals Complexes of (POPIONYL CARBAMOTHIOYL) Valine (PCV)

¹⁻²college Of Education, Ibn-Al- Haitham For Pure Sciences, Chemistry Department Baghdad University Of, Iraq Correspondence to: Saad S. Jaber, Email: alkhfajysd201@gmail.com

ABSTRACT

A new ligand was prepared (PCV) (popionylcarbamothioyl)valine by reacting (popionyl chloride)with ammonium thiocyanate in a ratio of (1:1)mole and adding it to 1mol of valine . The precise analysis of the elements(C,H,N,S) and FTIR spectra and (UV-Vis)measurements of ligand(PCV). The metal ion complexes are created and characterized using (FTIR) and (UV-vis) spectroscopy, magnetic susceptibility, atomic absorption, and conductivity studies. From The formula for calculating the findings is as follows: "[M(PCV)₂] where M⁺² is Mn, Co,Ni,Cu,Zn,Cd,Hg". since the complexes are thought to have a tetrahedral structure excluding the copper , which has a square planer geometry. **Keywords:** Valine , "metal complexes" , popionyl isothiocyanate .

INTRODUCTION

L-Valine is an "essential" of amino acid (a -amino) in humans[1,2], which means it cannot be synthesized by the body and must be received from diet[3]. It is a branched amino acid[4] that is required for protein biosynthesis[5]. L-Valine is a critical and beneficial chiral amino acid that is used to catalyze asymmetric reactions [6]. And they are broadly dispersed but seldom surpass 10% [7]. may be synthesized from alanine by introducing two methyl groups onto the -carbon atom[8,9]. [N-(acetyl amino)Thioxomethyl]valine was synthesized by (Alia S., 2012) [10], as well as (Bekele Y. et at ,2020) A new derivative of valine called (Ketimine)[11], preparation, spectra, and biological properties of transition metals(II)and(III)Mixed-ligand structures with (5-chlorosalsalic Acid)and L-Valine by (Shatha M. et al., 2019)[12], and also (Nouria A. Belkher.et al., 2019) Studies on the constant of some transition metal ion[13]. synthesis and characterization of Co(II)and Ni(II)complexes of Schiff base derived from Nenhydrin and Valine by (Achalu C. et at ,2020)[14],and also (Mekuanint H. et at ,2021) synthesis and characterization of Fe(II) and Mn(II)complexes of (Schiff base) derived from Nenhydrin and Valine [15].

Aims: synthesis of many metal ion complexes by (popionyl carbamothioyl) valine (PCV).

MATERIALS AND METHODS

popionyl chloride , valine, hydrated manganese chloride , hydrated cobalt chloride , hydrated nickel chloride , hydrated cupper chloride , Zinc chloride , hydrated cadmium chloride , mercury chloride , All reagents are considered pure by (March and BDH).

Instruments: The FTIR spectra of the KBr disc were acquired using a Shimadzu,FTIR-8300,Infrared spectroscopy. (H¹and C¹³-NMR)was captured at Basra University of Science and technology utilizing an Ultra shield 300Mhz. Electronic spectra were obtained using Shimadzu UV-160A-Visible Recording spectrophotometer. Conductivity was measured by using pw-Digital Meter Conductivity Philips. The MSB-MKT Balanced Magnetic Susceptibility Model

was used to acquire magnetic susceptibility data. Stuart's Melting Apparatus was used to determine the melting point. The metals concentrations of the complex were determined using the Shimadzu AA680 GBC 933 plus atomic absorption method. The analysis of microelements (C,H,N,S) was done using the acrlo Euro Vector EA3000A..

Preparation of ligand (PCV):

1 An ammonia thiocyanate solution of 2g and popionyl chloride of 2.26ml were dissolved in 25ml of Acetone for 3 hours, and the filtrated solution was used for the following reaction of (Popionyl isothiocyanate). [16]

2 preparation of **(popionyl carbamothioyl)valine(PCV)** : (3.04g, 1mmol)Valine To sustain strong reflux, that (25ml) ethanol was quickly added. After 6 hours of refluxing, the Re-crystallization of the solid was carried out by washing the sample with Acetone and then ethanol.

Scheme 1: preparation ligand (PCV)

Synthesis of metal complexes: (0.46g)(2mmol) of ligand (PCV) in (25ml) of ethanol, (0.12g-2mmol) KOH and the following metal salts were added to: " MnCl₂.4H₂O (0.2g-1mmol),CoCl₂.6H₂O (0.24g-1mmol), NiCl₂.6H₂O (0.24g-1mmol)", and CuCl₂.2H₂O (0.24g-1mmol) The precipitate quickly developed after three hours of constant stirring. Afterward, the precipitate rinsed with distilled water in a vacuum to remove any remaining impurities. Table 1 provides a list of the many physical characteristics.

Compound M.Wt (g/mol)		Color	M.P CO Or dec.	M%	Molar condu.	µeef
				Calculation (Found)	Ohm-1.Cm2.mol-1	(B.M)
(PCV)	232	Yellow	120-125	83	2.1	
]Mn(PCV)2[517	Brown	Dec.215	71	6.5	5.93
Co(PCV)2	521	Purple	130-132	78	13.2	4.33
] Ni(PCV) ₂ [520.7	Green	Dec.245	77	9.6	2.99
Cu(PCV)2	525.5	Blue	Dec.218	66	7.4	1.73
] Zn(PCV) ₂ [527.4	White	190-192	62	7.1	0.00
Cd(PCV) ₂	574.4	White	160-162	70	15.2	0.00
Hg(PCV) ₂	662	Yellow	161-163	74	8.2	0.00

Table 1: The ligand (PCV) and its metal complexes' physical characteristics

Spectral studies 1: Infrared spectra of the free ligand (PCV)'(Fig:1)'revealed bands around (3456)cm⁻¹,(1604)cm⁻¹ and (1242)cm⁻¹, respectively, due to (N-H), (C=O), and (C=S), whereas

another band absorbed at(1728)cm⁻¹. might be regarded as a (COO-)asym, with the (COO-)sym being seen at (1400)cm⁻¹

SAAD S. JABER¹, BASIMA M. SARHAN²

Fig 1: FTIR Spectrum of ligand(PCV)

FT-IR spectra of complexes Fig (2) revealed a significant difference in the frequency of bands belonged to the stretching vibration of the (N-H) in the range (3410-3421)cm⁻¹ descreased by (35-46)cm⁻¹, indicating the possibility the ligand(PCV) coordination the nitrogen atom at amine. frequency (COO)asym at (1558-1647)and inscreased by(81-170) cm⁻¹ . but frequency (COO) sym at(1415-1473)cm⁻¹ descrease by(11-69)cm⁻¹the carboxylic group coordination with metal .The stretching vibration band appears of with (C=O) and (C=S) remain unchanged (1608 cm⁻¹ and 1280 cm⁻¹ ¹, respectively). As a result, not coordination between (metal-

oxygen) interactions were validated using the bending oscillations of (M-O) and (M-N) at frequencies of (470-587) and (416-470)cm-1, respectively. The bands and assignments indicated in Table (2) should be carefully considered for the title compound (PCV) and its complexes.

Fig 2: FT-IR Spectrum of complex Cu(PCV)2

Table 2: FT-IR frequencies in (cm	¹) for ligand (PCV)
-----------------------------------	---------------------------------

Complex	u(COO) ^{asym}	U(COO) sym	Δu	υ(N-H)	υ (C=S)	u (C=O)	υ(M-N)	υ(M-O)
				υ(O-H)		amide		
Ligand(PCV)	1728s	1400	-	3456(b)	1242	1604w	-	-
				3390(b)				
[Mn(PCV) ₂]	1597s	1415s	182	3437m	1269m	1604w	424w	474w
[Co(PCV) ₂]	1631s	1465m	166	3217m	1257m	1604w	412w	455w
[Ni(PCV) ₂]	1593s	1411s	182	3344m	1269w	1627m	428w	474w
[Cu(PCV) ₂]	1589m	1465m	124	3437m	1215m	1620m	424w	489w
[Zn(PCV) ₂]	1593m	1415m	178	3275m	1269m	1604w	424w	470w
[Cd(PCV) ₂]	1581m	1465m	116	3356m	1219w	1612w	435w	470w
[Hg(PCV) ₂]	1597m	1469m	128	3429m	1238w	1604w	410w	516w

s=strong, m=medium, w=weak

2)¹H and ¹³C-NMR spectra:

¹H-NMR spectrum: for ligand(PCV)in "Using DMSO as the solvent, Fig (3) revealed the following signals: doubled at (0.82) parts per million for (2CH₃,6H), triplet at (0.98)ppm for (CH₃,3H) propionyl group, multiplet at $\delta(1.132)$ ppm for(CH(CH₃)₂,1H),singlet at $\delta(2.53)$ ppm for DMSO ,triplet at $\delta(3.73)$ ppm for (CHCOOH,1H) ,quartet at (2.173)ppm for (CH2,2H) propionyl group, singlet at δ (7.28)ppm for (NH_{amine},1H), singlet at δ(7.460)ppm for (NH_{amide},1H), singlet at δ(8.191) ppm for(COOH,1H)".

Fig 3: 1HNMR spectrum of ligand (PCV)

¹³C- NMR spectrum: in DMSO for the ligand (PCV) The following signals were shown in Fig(4): for signal at (0.56 ppm) (CH₃), signals at (18.23-18.47)ppm for(2CH₃),signal at (29.49)ppm for (CH(CH₃)₂), signals at(29.80)ppm for (CH₂-CO), signals at (39.19-40.44)ppm for DMSO, signal at (57.66)ppm for(CHCOOH), signal at (130.50)ppm for (C=O), signal at (170.83)ppm for (COOH), signal at(170.89)ppm for(C=S).Table (4) includes the spectral data for ligand (PCV).

Fig 4: ¹³CNMR spectrum of ligand (PCV)

Table 3: ¹H-NMR spectral data for ligand (PCV)

	Compound	No of protens	(ppm) δ		
		d (2CH₃ , 6H)	0.82		
		t (CH ₃ , 3H)	0.98		
		m(CH(CH ₃) ₂ ,1H)	1.132		
Lig (PC	Ligand	q(CH ₂ ,2H)	2.173		
	(PCV)	t(CHCOOH ,1H)	3.73		
		s (NH amine ,1H)	7.28		
		s (NH amide ,1H)	7.46		
		s (COOH, 1H)	8.191		

Table 4: ¹³ C-NMR spectral data for ligand (PCV)

Compound	Function group	(ppm) δ	
	CH₃	0.56	
	2CH ₃	18.23-18.47	
	CH(CH ₃) ₂	29.49	
Ligand	CH ₂ -CO	29.80	
(PCV)	СНСООН	57.66	
	C=O	130.50	
	СООН	170.83	
	C=S	170.89	

The metal complexes exhibit the following magnetic properties: "Magnetic moment" (µeef) Numerous spin-only complexes have been identified, including those combining the metal complexes Mn+2(d5) and Co+2(d7)equal (5.93 B.M.) (4.33 B.M., respectively)[17] .The Ni⁺²(d⁸) complex has a µeff value due to the orbital contribution (2.99 B.M) [18].The µeef of the Cu⁺²(d⁹) combination was determined to be (1.73) B.M, within the expected range for a single electron. [19](1).

The electronic spectra: "The UV-visible spectra of ligand(PCV)in(0.001M)(DMSO),fig(5) show band at(36496) cm-1 that have been ascribed to $\pi \rightarrow \pi^*$ and (28653)cm⁻¹ due to $n \rightarrow \pi^*$ [20].

"[Mn(PCV)₂] d⁵: the yellow complex's spectrum Mn⁺², bracelets on display at (36630) cm⁻¹ and (14204) cm⁻¹,(14025) cm⁻¹ due to (ligand filed) and ${}^{6}A_{1} \rightarrow {}^{4}T_{1}$ (G), ${}^{6}A_{1} \rightarrow {}^{4}T_{2}$ (G) respectively"

[Co(PCV)₂] d⁷: the spectrum of green complex of Co⁺²: show bands at (36630) cm⁻¹ ,(25974) cm⁻¹ ,(14534) cm⁻¹ and (10080) cm⁻¹ attributed to (ligand field) , (C.T mix) with ${}^{4}A_{2} \rightarrow {}^{4}T_{1 (p)}$

 ${}^{4}A_{2} \rightarrow {}^{4}T_{1 (F)}$ and ${}^{4}A_{2} \rightarrow {}^{4}T_{2(F)}$ according to the connection, and the rachi inter molecular repulsion parameter (B-) was determined to be (687.2) cm⁻¹. β =B'/B_o :was found to be equal (0.70),these parameter are accepted to Co+2 tetrahedral complex" .

"[Ni(PCV)₂] d⁸ : the spectrum of deep brown complex of Ni⁺²: show bands at (37174) cm⁻¹ ,(26666) cm⁻¹ ,(15503) cm⁻¹ and

Fig(6): shows lines at (37453)cm⁻¹, (13531)cm⁻¹, and (12391)cm⁻¹ that really are due to the (ligand field), " ${}^{2}B_{1(g)} \rightarrow {}^{2}A_{1(g)}$ and

 $^{2}B_{1(g)} \rightarrow ^{2}B_{2(g)}$ " respectively. Zn(PCV)₂], [Cd(PCV)₂], and [Hg(PCV)₂] complexes The table summarizes the only [ligand field] and [C.T]of (M-L) transitions at (36630,26041)cm⁻¹,(37037,28735)cm⁻¹,and (36630,14204) cm⁻¹, respectively (5).

Table 5: the peaks electronic transition and structure geometries of (PCV) and its complexes No Emax Way number cm

	Complex	λ _{max} (nm)	ABC		L.mol ⁻¹ .cm ⁻¹	الملاحظات
-1	Ligand(PCV)	274	0.667	36496	667	$\pi \rightarrow \pi^{\star}$
	. . ,	349	0.136	28653	136	$n \rightarrow \pi^{\star}$
-2	[Mn(PCV) ₂]	273	0.500	36630	500	L.F
		704	0.043	14204	43	${}^{6}A_1 \rightarrow {}^{4}T_{1(G)}$
		713	0.046	14025	46	${}^{6}A_1 \rightarrow {}^{4}T_{2(G)}$
-3	[Co(PCV) ₂]	273	1.863	36630	1863	L.F
		385	0.380	25974	380	C.T mix ${}^{4}A_{2} \rightarrow {}^{4}T_{1(p)}$
		688	0.077	14534	77	${}^{4}A_{2} \rightarrow {}^{4}T_{1(F)}$
		992	0.025	10080	25	${}^{4}A_{2} \rightarrow {}^{4}T_{2(F)}$
	[Ni(PCV) ₂]	269	1.237	37174	1237	L.F
		375	0.225	26666	225	C.Tmix ${}^{3}T_{1(F)} \rightarrow {}^{3}T_{1(p)}$
		645	0.100	15503	100	${}^{3}T_{1(F)} \rightarrow {}^{3}A_{2}$
		995	0.105	10050	105	${}^{3}T_{1(F)} \rightarrow {}^{3}T_{2(f)}$
-5	[Cu(PCV) ₂]	267	0.782	37453	782	L.F
		739	0.025	13531	25	$^{2}B_{1(g)} \rightarrow ^{2}A_{1(g)}$
		807	0.021	12391	21	${}^{2}B_{1(g)} \rightarrow {}^{2}B_{2(g)}$
-6	[Zn(PCV) ₂]	273	0.694	36630	694	L.F
		384	0.388	26041	388	C.T
7	[Cd(PCV) ₂]	270	0.578	37037	578	L.F
		348	0.198	28735	198	C.T
-8	[Hg(PCV) ₂]	273	0.399	36630	399	L.F
		704	0.082	14204	82	C.T

CONCLUSION

The new ligand in the presented study was prepared through reaction from the(propionyl isothiocyanate) with valine, ligand has been characterized through: Element micro analysis (C.H.N.S.), FTIR, UV-Visible, and ¹H, ¹³C-NMR spectra. Ligands and transition metals have been synthesized and studied using FTIR, UV-visible ', spectroscopy. magnetic measurements, conductivity measurements, the suggested geometrical structure with regard to complexes have been tetrahedral geometry except for the copper, has square planer

R-CH-CH

Figure 7: structure of complexes [M(PCV)2]

M⁻⁷=Mn.Co.Ni.Zn.Cd.Hg

R/=CH(CH)_

REFERENCES

- 1- Encyclopædia Britannica Online ,Retrieved .(6 December 2015)."Valine". ..
- ^A Merriam-Webster Online Dictionary . Retrieved (6 December 2015)."Valine".
- ³⁻ A Taya Y., Ota Y.,and Wilkinson A.,(December 2016)."Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation". Science. 354 (6316): 1152–1155. Bibcode:2016Sci...354.1152T. doi:10.1126/science.aag3145. P MID 27934766. S2CID 45815137.
- ^A Fontana L., Cummings N., Arriola A., (July2016). "Branch-Chain Amino Acids Improves Metabolic Health". Cell Reports. 16 (2): 520– 530. doi:10.1016/j.celrep.2016.05.092. PMC 4947548. PMID 273463 43.
- Davies. (2006).[^]Amino acids, Peptides and Proteins[^] :Royal Society of Chemistry ,. https://doi.org/10.1039/9781847555250.
- ⁶ Basuchaudhuri P., (2016). Nitrogen metabolism in rice. Boca Raton, Florida: CRC Press. p. 159. ISBN 978-1-4987-4668-7. OCLC 945482059.
- 7- Bhushana , Rao ..(2013) .^Speciation studies of Co(II),Ni(II) and Cu(II) complexes of valine in acetonitrile-water mixtures ^.chemical Speciation and Bioavailabilty25(4),258-264.
- 8- Shimazaki Y., Takanib M. and Yamauchi O. (2009). Metal complexes of amino acids and amino acid side chain group .structural and properties ,Dalton Ttans ., 7854-7869.
- 9- Aliyu H.N., Isyaku S.(2010). Spectroscopic and potentiometric studies of N-hydroxybenzyl L-α-valine cobalt(II)complex, J.Biokemistri,vol.22(2),91-97.
- Alia S.Kindeel, (2012). Department of Chemistry, College of Education for pur science (Ibn Al-Haitham) University of Baghdad, Received in :.
- 11- Bekele Y., Achalu C. and P.Thillai A,. (2020). Department of Chemistry, College of Natural and Computational Sciences, Wollega University P.O Box:395, Nekemte, Ethiopia..

- 12- Al Naimi Sh. M.H .kindeel A.S .Jarad A.J.Al-Noor T.H.(2016).Synthesis and antibacterial activities of some mixed ligand complex , Transactions on Engineering and Science ,vol.4,Issue 2,42-47.
- 13- Nouria A., Aisha A. and Mohamed Z., (2019).Potentiometric Studies on Stability Constant of the Complexes of Some Essential Transition Metal lons with L-Valine Vol. 18 No. 3: The Third Conference for Graduate students at The Sebha University.
- 14- BekeleY., Achalu C. * and P.Thillai A.,(2020).Synthesis and Characterization of Co(II) and Ni(II) complexes of Schiff base derived from Ninhydrin and Valine SSN(Online):2455-9555, Vol.13 No.03, pp 265-273, DOI= http://dx.doi.org/10.20902/IJCTR.2019.130324
- Mekuanint Hi., Ponnusamy Th. and Achalu Ch., (2021).Synthesis of Fe(II)and Mn(II) complexes of Schiff Base derived from Ninhydrin and Valine ,ISSN:0974-4304,online :2455-9563,vol.14,No,1,pp67-73 http://dx.doi.org/10.20902/IJPTR.2021.140106.
- 16- Kabbani, A.T., Ramadan, H., Hammuud, H.H. and Hanuom, A.M.G.(2005). "Synthesis of some metal complexes of N-[(benzoyl amino)-thioxomethyl] amino acid (HL)", J. of the uni. of chem. tech. and meta., 40 (4): 339-344.
- 17- B.M. Sarhan and B.M. Fyyadh; (2017)."synthesis and spectroscopic studies of some Divalent Metal Ion complexes of 3-(3(2-chloroacteyl) thioureido) pyrazine-2-carboxylic acid) ", ,Al-Qadisiyha Journal of pure sciences; vol:(22) No:(2),pp1o-19.
- Hanna W., Moaead M., (2002). "Synthesis and characterization and antimicrobial activity of Co(II),Ni(II)and Cu(II) complexes with new asymmetrical Schiff base ligand "Transition metal Chemistry, 7: 140-144. doi:10.1023/A:1012066612090
- 19- Sanja O, Podunavac-Kuzmanovic, Sinisa L Markov, Ljilianas.Vojinovi (2004) "Physico Chemical characterization and antimicrobial activity of copper (II) complexes with 2-amino and 2-methyl benzimidazole Derivatives" 35: 280.
- 20- Kettle,S.; Thomes, N. and Sons, S.; (2017). "Coordination Compounds";.