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ABSTRACT 
Human immunodeficiency virus type 1 (HIV-1) is the causative agent for acquired immunodeficiency syndrome (AIDS). In 2020, 
South Africa recorded an estimated 8,2 million people living with HIV. This extensive figure is a red flag to the country, as it 
causes serious economic burden to its health care system. In the quest for finding a suitable inhibitor for HIV-1 protease, 
computer aided drug design (CADD) approachstands out to be one of the leading fields of study in pursuit of a new drug for HIV. 
The Lipinski rule of five was applied in screening the ninety-two plant extracts from Ocium santum, Carica papaya, Persea 
Americana, Azadirachta indica and Spondias mombin medicinal plants, and forty-six of the compounds complied with this rule. 
Afterwards, a ligand-based pharmacophore was constructed based on the active properties of the three (3) best binding 
compound obtained from the screened ZINC compounds (Zinc_001456687980, Zinc_001445792073 and Zinc_001461099137). 
Then the compounds with less than 0.5 RMSD were picked out. The best 10 compounds were docked and compared with a 
drug that is already in the market, dolutegravir. 3, 5-di-O-galloyl-4- O-digalloylquinic acid 3,5,4,4-Tetragqa (-8.6), epicatechin (-8) 
and quercitrin (-8) obtained the highest binding affinity.Even though Tetragqa had the highest binding affinity, it failing the test 
because of its large molecular weight. The safety evaluation and other chemical parameters that included the lipophilicity, 
physicochemical other properties of these compounds was performed through SwissADME/T web server. On the best top three 
binding compounds, only epicatechin (-8) had promising features of a drug candidate. However, the remaining compounds from 
the best 10 compounds were also analysed using the SwissADME/T tools, whereby two of them (juglanin and catechin) satisfied 
the ADMET prediction analysis. Catechin showed some promising features as well after it displayed good druglike properties, 
suitable for a novel compound. Lastly, molecular dynamics simulation was then performed on the three lead compounds 
namely; epicatechin, juglanin andcatechin against dolutegravir. The ligand protein interaction between catechin and the protein 
displayed minimal shift of the protein during the simulation that was performed over 100ns, signifying a strong complex 
association.  

 

INTRODUCTION 
The first case of human immunodeficiency virus was recorded in 
1981 (Greene, 2007). Over the years to date, there has been 
serious scientific work done in attempting to eradicate this disease 
from humankind. In 2020, HIV claimed around 690 000 lives 
globally (UNAIDS, 2020). However, since the first case of HIV 
(AIDS), a lot of progress has been made in the pharmaceutics, 
with numerous computer aided drug design (CADD) approaches 
being applied in finding a cure for this disease (Stuart et al., 2018). 
Subsequently, there is a strong need to manufacture antiretroviral 
drugs (ARVs) that are affordable, with minimal side effects and are 
moreeffective treatment than the heavy burden pills that were used 
some decade ago. South Africa, with the largest HIV treatment 
program in the world (AIDSmap), introduced dolutegravir to its 
patients with an estimate of over 4.8 million people on HIV 
treatment programs (Global information and education on HIV and 
AIDS, 2020). Dolutegravir, also known as “the game changer” 
proved that it has the capacity to suppress the patients’ viral load 
quicker than other ARVs, and, was used as a control in this study 
against selected medicinal plants (A publication of the Southern 
African HIV Clinicians Society, 2021). 
 Protease being an important structure found in the human 
immunodeficiency virus (Kräusslich et al., 1989), helps in the 
processing of Gag-Pol and Pol polypeptide into mature functional 
proteins. It is also responsible for the maturation of virions that are 
released by the virus, and, it belongs to the class of aspartic 
acid(Oroszlan and Luftig, 1990). This class functions as a catalytic 
dimer. These virions only become non-infectious when the 
protease is blocked in order to maturate the virions(Konvalinka et 
al., 2015). This inhibits the replication of HIV-1 through the 
introduction of HIV-1 inhibitors that are competitive towards the 
binding site of the protease (Louis et al., 1994), (Kohl et al., 1988). 
 In this study, the application of CADD techniques were used 
in finding an inhibitor/s from five plant extracts namely: Ocium 
santum (Rajinikanth et al., 2013), Carica papaya (Yogiraj et al., 
2014), Persea Americana (Owolabi et al., 2005), Azadirachta 

indica (Mahapatra et al., 2012) and Spondias mombin(de Lima et 
al., 2016). The screened phytochemicals were then compared with 
dolutegravir, which is an ARV that is currently been administered 
to HIV patients in South Africa(Hauser et al., 2020). The active 
biological activity of dolutegravir were compared with the lead 
compounds retrieved from PubChem database. The application of 
literature was an important tool in finding respective biological 
composition for each plant, which in total, a number of 92 
phytochemicals were identified (Mulligan et al., 2018). 
 Computer Aided drug design (CADD) is a molecular 
modelling approach that can be used to search for new drugs 
thatcan cure diseases. This approach have yielded a lot of success 
over the years with some of the ARVs’ being discovered through 
CADD(Surabhi and Singh, 2018), (Veselovsky and Ivanov, 2003). 
With the administration of highly active antiretroviral therapy 
(HAART) there is a lot of progress that has been made in an 
attempt to curb this epidemic. However, some of these 
medications creates a lot of pill burden to patients who are placed 
on suchtherapeutic processes (Shafer and Vuitton, 1999). Other 
challenges that includes the antimicrobial resistance make it 
difficult to treat some patients who are failing extensive 
antiretroviral therapy(Rackal et al., 2011), hence a need for a 
permanent solution to this disease.  
 Docking studies between virtually screened ligands from the 
ZINC database (for pharmacophore modelling)and PubChem (for 
selected phytochemicals)playedan important role in finding 
potential drug compounds that can be used, by contributing to the 
fight against this HIV.ZINC and PubChem being the largest 
databases of small ligand compounds with approximately more 
than 1, 3 billion compounds (Ton et al., 2020) and111 million 
structures(Gaulton et al., 2013) respectively, marks a good start for 
the screening of suitable novel compounds (Sabe et al., 2021). 
 Auto Dock Vina is one of the tools used to dock such 
compounds with the protein. It has yielded great success in an 
attempt to understand the protein-ligand interactive properties and 
also in the quest of findingnovel compounds(Grinter and Zou, 
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2014), (Karplus and McCammon, 2002). One of the best tools of 
filtering these compounds is pharmacophore modelling, which is a 
process of mimicking already existing biologically active properties 
on known structures, either in complexed or uncompleted 
structures, in order to filter compounds in a class based on their 
similarity and likeness(Walters and Wang, 2020). 
 Using MD as an approach to gain more insightpertaining to 
prominent molecular interactions, it is also possible to 
analyzedynamic features that are being formed by such 
interactions. Simulation process entails a post-docked protein-
ligands compound, used in order to analyze the different 
orientation that might have raised in the process. Only the best-
docked compounds, which were predicted to satisfy the health and 
safety administration analysis using ADMET were simulated in 
time of nanosecond scale. These simulated results includes the 
statistical parameters such as the RMSD, RMSF and Hydrogen 
contacts (Borhani and Shaw, 2012), (Vora et al., 2019). 
 In this study, we followed these CADD processes of finding a 
possible dug candidate for HIV-1 protease.ADMET property 
analysis, wereperformed on the lead compounds to predict the 
bioavailability of those compounds. In drug discovery, determining 
the toxicity level of compound is one of the fundamental routines 
that is encouraged to be performed early in the search for a new 
drug. Therefore, SwissADME as a web server, is an approach that 
predicts the different parameters of compounds. It saves time and 
it limits risks of putting patient’s life in danger (Daina et al., 2017), 
(Brenk et al., 2008). At a later stage, these multiple chemical 
parameters are very essential in determining the efficacy of a novel 
compound.(Baell and Holloway, 2010).  
 

MATERIALS AND METHODS 
The following flowchart was prescribed for the computer aided 
drug design and its methodology, as shown below:  
 

 
 
Figure 1: The Flowchart of adopted computer-aided drug design (CADD) 
methodology. 

 
 5.2.1 PubChem database 
 Phytochemicals were retrieved from PubChem database. 
This database contains unique chemical structure. Eighty-nine 
compounds that were used in this investigation were retrieved from 
except for three, which were drawn on MOE software. 
 5.2.2 Phytochemicals Library 
 A library in the MOE was created for all the retrieved 
phytochemical. In addition, the Lipinski’s rule was used to screen 
all the ninety-two stored phytochemicals. 
 5.2.3 Target Identification 
 HIV-1 protein (1rv7) was also retrieved from the Protein data 
bank (O'Leary et al., 2016). This structure is one of the five wild 
type structures stored in the Protein Data Bank and it has a 
resolution from 2.7 Å (Sillanpää et al., 2008). 1rv7 is a protease 
with two chains (A and B) with a sequence length of 99. It was 

isolated from a patient who was failing antiretroviral therapy and 
subsequently deposited into the database (Liu et al., 2015).  
 5.2.4 Protein preparation 
 The retrieved protein was downloaded from the PDB (Liu et 
al., 2015). Water molecules and hetatoms were then deleted using 
Biovia discovery studios. Since protein was retrieved as a co-
crystallized complex with the ligand, the present ligand was 
removed by the “Define and Edit binding site” then “Current 
selection” and delete ligand. Water molecules were then added by 
applying Chemistry, Hydrogen then add polar (Adeniji et al., 2020). 
 5.2.5 Pharmacophore Model 
 Using molecular operating environment (MOE 2015.08) 
software, a pharmacophore model was constructed using the 
structures of the best binding ZINC compounds 
(ZINC_001456687980, ZINC_001445792073 and 
ZINC_000015276354) (from the first stages of this investigation). 
Forty-Six compounds were energy minimized the MMFF94 
forcefield, were the of0.01 RMSD was maintained. The main 
features of the three ligands were isolated in order to mimic the 
compound likeness so that the phytochemicals are further 
screened using this pharmacophore model. This method is helpful 
in categorizing structures, since there are many compounds with a 
range of structural diversity that has unique biochemical activities 
(Mannhold et al., 2006). 
 5.2.6 Virtual Screening 
 The phytochemicals were screened from the create MOE 
library using the constructed pharmacophore model, based on the 
developed pharmacophore query.  
 5.2.7 Docking Procedures 
 A blind docking analysis between the phytochemicals and 
the protein was performed using the AutoDock Vina v.1.2.0 using 
the following axis:  center = 19.1732 center_y = 41.6246 center_z 
= 0.0403 size_x = 37.819451558 size_y = 37.9149091911 size_z 
= 58.311979351. The interactions between the ligand and the 
protein was observed on the Biovia discovery studio. 
 5.2.8 Lead Compound Identification 
 Compounds with the most active inhibition capability were 
discovered based on the best binding affinity and ligand-protein 
interactions (Kim and Skolnick, 2008). These compounds 
displayed high biochemical activity, since they derived from a 
pharmacophoric culture and were also compared with a control 
drug, Dolutegravir, a drug that is already in the market and already 
in use in South African health care sector (Plewczynski et al., 
2011).  
 5.2.9 Toxicity Analysis 
 The drug like descriptions and toxicity characteristics were 
identified through SwissADME (Daina et al., 2017). This calculation 
includes (ADMET calculation) adsorption, distribution, metabolism, 
excretion and toxicity (Xu et al., 2012). The mutagenicity and the 
carcinogenicity were also determined for the lead compounds. The 
determination of these lead compounds was based on the 
pharmacophore and the docking score, the ligand-protein 
interactions. Other related studies include, mol mw, donorHB, 
accptHB, QPlogPo/w, QPlogHERG, QPPCaco, QPlogBB and 
number of rings determination etc.(Low et al., 2011), (Mulliner et 
al., 2016), (Alavijeh et al., 2005). 
 5.2.10 Molecular dynamic simulation 
 After performing molecular docking and analysis the 
interaction between the protein and the ligands. Molecular 
dynamics simulation was carried out using Desmond, a Package of 
Schrödinger LLC  (Alavijeh et al., 2005). The simulation was 
performed at 200ns, in order to predict the ligand binding 
properties in the physiological environment. In this system that 
were prepared by the System Builder tool, the Solvent Model with 
an orthorhombic box was selected as Transferable Intermolecular 
Interaction Potential 3 Points (TIP3P) using the OPLS_2005 force 
field throughout the simulation (Al-Shabib et al., 2018), . The 
models were then relaxed before the simulation can resume and 
the counter ions were added in order to neutralize the model. The 
following parameters were used to mimic the physiological 
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environment: a) Isothermal-Isaboric: Moles (N), pressure (P), and 
temperature (T) were conserved at 300K temperature, (these are 
The NPT ensemble) b) a 0.15 M salt (NaCl).c) (Deganutti et al., 
2020), and in this simulation, trajectories were saved after every 
100 ps for analysis. 
 

RESULTS 
In Silico Analysis: Based virtual screening 
 

 
Figure 2: Flowchart of the results obtained from computer aided drug design 
(CADD) 

 
5.3.1 Druglikeness Analysis: Molecular properties that includes 
the Lipinski rule, pharmacophore model, molecular weight, 
molecular docking and molecular dynamic simulation are some of 
the guided computational approaches that were applies in this 
study. The prediction using the Lipinski rule states that, a 
compound having either poor permeation or absorption is more 
likely to fail when it violates the Lipinski rule of 5 (Lipinski et al., 
1997). Using a free web SwissADME server 
http://www.swissadme.ch/different chemical parameters were 
predicted. These includes, the pan assay interference compounds 
(PAINS), which predicts the structural alerts that has unstable, 
reactive and toxic elements in their biological components (Ferreira 
and Andricopulo, 2019).The essence of searching for a novel drug 
candidate relies on using the features of an existing drug that has 
been approved by the food and drug association (FDA) (Ekins et 
al., 2014). One such tool is the application of pharmacophore 
modelling, which is a tool that mimics the features of active 
biological components of a compound. This is done in order to 
have a library of druglikeness, which can be screened to find a 
suitable drug candidate (Ritchie et al., 2011).   
5.3.2 Construction of A ligand based pharmacophore Model: 
Pharmacophore technique based on the active ZINC ligands 
mimicry;- Ligand based pharmacophore modelling. 
 
Table 1: Interaction between the trio hot-spot residues of three lead ZINC 
ligands structure (from previous investigation): PDB ID: 1rv7. 

ligands hot-spot residue Type of interaction Residue 

F1 = Aro Alky/Pi Alkyl 23, 28, 82, and 84, 

F2 = Acc Van der Waals  32 and 84 

F3 = Don/Acc Pi Sigma 32 

 
Figure 3: A Pharmacophore model of three ZINC Ligands structure. 

 The three best ZINC compounds which are 
zinc_1456687980, zinc_1445792073 and zinc_15276352 were 
used to construct a ligand-based pharmacophore on the molecular 
operating environment where a conformation database and the 
pharmacophore model was built. These compounds the most 
active compounds screened from the ZINC database. A 
pharmacophore query was also built. This query was searched to 
show the features that will determine the likeness from the 
phytochemicals library. 
5.3.3 Virtual Screening of HIV-1 Protease Inhibitors Using 
PubChem Databank, AutoDock Vina and the Lipinski’s Rule of 
Five 
Virtual Screening of some phytochemical plant extracts: 
Below is a list of the phytochemical extracts that were screened. 
a) Ocium santum: 1 α-Pinene 
2 α-thujene 3 α-Camphene 
4 β-Pinene 5 α-Myrcene 6 D-Limonene 7 
Eucalyptol  8 cis-α-Terpineol  9 Sabinene  10 Borneol  11 Bornyl 
acetate  12 Camphor 13 Eugenol  14 Selinene  15 Caryophyllene 
oxide  16 Veridifloro 17Cubenol 18 Caryophyllene oxide 19 
Selinene 20 β guaiene 21Phytol 22 Oleic acid 23 Aromadendrene  
oxide  24 β-gurjunene  25 Eicosane 26 Ethyl  cyclohexenal ketone  
27 n - butyl benzoate 28  3 – Furaldehyde 29 Benzaldehyde 30 
Heptanol  31 1-Octen-3-ol  
 βguaiene21 Phytol22 Oleic acid 
b) Carica papaya: 1. Decylene 2 Trans-Geranylacetone 3.Methyl 
tridecanoate 4.Palmitic acid 5.Myristic acid, methyl ester 6. Myristic 
acid 7.Palmitic acid, methyl ester 8.Hexadecanoic acid 
9.Linolelaidic acid, methyl ester 10. Methyl cis-6-octadecenoate 
11. Stearic acid, methyl ester 12. Oleic acid 13.Stearic acid 14 15-
Tetracosenoic acid 15. Methyl heptacosanoate 16. Trans-13-
Docosenoic acid 17. Methyl erucate 18. Methyl behenate 19. 
Heneicosanoic acid, methyl ester 20. Farnesyl cyanide 
21.Quercetin 22. Chlorogenic acid 23. 5,7 dimethoxycoumarin 24. 
Caffeic acid 25. Kaempferol 26. P-Coumaric acid 27. Protocatehuic 
acid. 
c) Persea Americana: 1. C21H20O10     2. Afzelin  3.  Catechin 
4.Juglanin  5.  Quercitrin 6.  Epicatechin 7. Astragaline 8. Trans-
tiliroside 9. Senecin 10. Juglalin 11.  Quercetin  12. (6R,9R)-3-oxo-
α-ionol-9-O-β-D-glucopyranoside 13. Roseoside 14. 
Ficumegasoside 15 Icariside B1 16. (+)-lyoniresinol  17. (+)-
isolariciresinol 9-O-β-D-xylopyranoside 18 Flavonol glycoside 19. 
Megastigmane glycosides 20 Lignans. 
d) Azadirachta indica (neem): 1. Azadirachtin 2. Nimbolinin A. 3. 
Nimbin 4. Quenrcetin 5 Sitosterol 6. Salannin 7. Gedunin 
e) Spondias mombin: 1.) Geraniin   2.) 3, 5-di-O-galloyl-4- O-
digalloylquinic acid 3.) 3-O-digalloyl-4,5- di-O-galloylquinic acid 4) 
1,3,4,5-tetra-Ogalloylquinic acid 5) 2-O-Caffeoyl-(+)-
allohydroxycitric acid. 6) 6-(8'Z,11'Z, 14’Zheptadecatrienyl)- 
salicylic acid 7) 6-(10'Zheptadecenyl)- salicylic acid.  
 g) Control drug = Dolutegravir (A recommended ARV in 
South African healthcare system) 
The three phytochemicals that were not found in the ZINC 
Data Base: All the phytochemicals were found in the ZINC 
Database except for three, which are:Senecin, (6R,9R)-3-oxo-α-
ionol-9-O-β-d-glucopyranoside and Megastigmane glycosides from 
the plant Persea Americana. There structures were constructed 
using the MOE. 
Phytochemical library: A library of all the ninety-two  
phytochemicals was created on the molecular operation 
environmental. A total of forty-six phytochemicals was identified 
after employing the Lipinski’s rule of five. The retrieved extracts 
were compounds that met the following criterion: a) H-Bond Donor 
> 5, Molecular weight >500, Hydrogen Bond acceptors>10, 
LogP>5 (Lipinski et al., 1997). This method is often employed in 
finding a category of inhibitors that has the same pharmacological 
properties. 
Phytochemicals-Pharmacophore properties based on the 
RMSD: The compounds that had the best pharmacophoric hit were 
identified and filtered using an RMSD score. Twenty of the forty-six 

http://www.swissadme.ch/
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https://www.sciencedirect.com/topics/medicine-and-dentistry/quercetin
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/flavonols
https://www.sciencedirect.com/topics/medicine-and-dentistry/glycoside
https://www.sciencedirect.com/topics/medicine-and-dentistry/lignan


Computational Studies for Selected Medicinal Plants against Dolutegravir using Ligand Based Pharmacophore 

 

930   P J M H S  Vol. 16, No.01, JAN  2022 

compounds had a score that is less than that of 0.5 RMSD score. 
These compounds were then chosen as candidate compounds for 
molecular docking studies.  
5.3.4 Molecular Docking Studies: Compounds that were docked 
displayed different binding affinities and the one with the least 
binding affinity were picked and analyzed further using Autodock 
Vina and MGL tools. Their interaction was viewed on Biovia 
discovery studio. This observation tool assisted in visualizing the 
different poses and the residues interaction between the protein 
and the ligands. 2D were structured from this software. The chain 
structures of important active sites were also displayed. From the 
hierarchy window the amino acid sequence for the complexes was 
determined. The Amino acids that makes up the active site were 
identified and analyzed, using discovery studio. 
Best 10 Compounds for Molecular docking Studies: Table 2: 
The table below shows structures of the best 10 compounds, after 
molecular docking. 
 

 
1.PubChemID_348294336 
 

 
2.PubChemID_467296 
 

 
3.PubChemID_5280459 
 

 
4.PubChemID_54726191 

 
5.PubChemID_53206866 
 

 
6.PubChemID_11953828 
 

 
7.PubChemID_5318771 
 

 
8.PubChemID_52803439 
 

 
9.PubChemID_5481882 
 

 
10.PubChemID_1203 
 
5.3.5 SwissADME studies: The results of the ligand properties 
were obtained from SwissADME server as shown on table 3 and 5. 
SwissADME is a web server that can be used to predict the 
properties of the compounds. Using SwissADME web server, 



A. R. Motsilanyane, Z. Mkhize, S. Sosibo 

 

P J M H S  Vol. 16, No.01, JAN  2022   931 

lipophilicity was applied in predicting the physico-chemical 
properties for the best ten compounds. The five models of this 
parameter were determined as shown on table 3. These models 
are, iLOGP, XLOGP, MLOGP, WLOGP and SILICOS-IT. Based on 

these parameters, three compounds epicatechin, juglanin and 
catechin were identified as lead novel inhibitors, as highlighted in 
green and the control in red/ dolutegravir. The lead compounds 
were identified as epicatechin, juglanin and catechin.  

 
Table 3: Lipophilicity of the 10 best phytochemicals  

PubChemID M.W Binding 
Affinity 

RMSD 
Score 

iLOGP XLOGP3 WLOGP MLOGP SILICOS-
IT 

C/SUS LOG 
P O//W 

1. PubChemID_348294336/3, 5-di-O-
galloyl-4- O-digalloylquinic acid 3,5,4,4-
Tetragqa 

800.59 

-8.6 

0.1377 1.15 1.83 1.25 -2.08 -1.17 0.20 

*2.PubChemID_467296/epicatechin 456.40 -8 0.1800 2.35 1.85 2.51 0.53 1.59 1.77 

3.PubChemID_5280459/quercitrin 448.28 -8 0.1819 1.60 0.86 0.49 -1.84 0.01 0.22 

4.PubChemID_54726191/Dolutegrair 419.38 -8 control 2.10 2.44 1.66 1.05 1.85 1.82 

5.PubChemID_5320686/transtilirosie 594.52 -7.7 0.1919 2.68 2.47 1.62 -1.04 1.56 1.46 

6.PubChemID_11953828/flavonol g. 400.38 -7.6 0.2840 2.33 1.23 0.64 -0.60 1.30 0.98 

*7. PubChemID_5318717/juglanin 418.35 -7.6 0.1820 1.76 1.33 0.39 -1.57 0.54 0.49 

8. PubChemID_5280343/Quercetin 302.24 -7.2 0.2055 1.76 1.33 0.39 -1.57 0.53 0.49 

9. PubChemID_5481882/juglalin 418.35 -7.1 0.1819 1.76 0.78 0.39 -157 0.38 0.38 

10. PubChemID_1203/catechin 290.27 -6.9 0.2055 1.46 0,36 1.22 0.24 0.98 0.85 

 
 The lipophilic studies analyses if the drug is suitable for polar 
or non-polar activity. Uncharged and nonpolar drugs dissolve in 
oily substances and in contrast charged and polar drugs dissolves 
well in water, hence hydrophilic. In the body biomembranes are 
such fatty acids, which is a lipophilic barrier. When drugs are in an 
active state, the are usually lipophilic, hence the need to know the 
nature of the drug either it is lipophilic or hydrophilic(Olasupo et al., 
2020), (Ejeh et al., 2021), (Vivek and Swapna, 2021). These drugs 
feature has a great effect on the pharmacokinetic properties that 
includes the adsorption, distribution, metabolism and its 
excression(Chowdhury et al., 2021), and therefore, there is a great 
need to analyze these properties in the quest of finding a drug with 
suitable properties. 
 SwissADME shows two compounds with similar lipophilic 
properties, juglanin and quercetin, one passed the test and the 
other failed, respectively. The reason to that lies on the fact that 
quercetin has no rotational bonds. 
 
Table 4: Swiss ADME properties Ligand ID  QPLogHERG QPPCaco 2D 
structures  

 

 
A. PubChemID_467296-6.13936.507 

 

 
B. PubChemID_5318717-5.39169.995 

 

 
C. PubChemID_1203 -5.223107.351 

 
D. PubChemID_ 54726191 -0.9681341.852 

 
Table 5:  SwissADME/T properties for Lead Compounds Properties of lead 
compounds Epicatechin (I)  Juglanin(I)     Catechin(I)Dolutegravir (c)  

Molecular weight 456.40 418.35290.27419.38 

Toxicity Catechol Non-toxicCatecholNon-
toxic 

Rotatable bonds 5 4 14 

Ring 4 4 34 

RMSD Score 0.18000.18200.2055 Control 

Carcinogenetic Non-Carcinogen N/C   N/CN/C 

Solubility Soluble M/S Soluble Moderately 
Soluble 

Binding Energy -8-7-6 -6-9-8 

Molar refractivity 114.51 - 102-17 74.33 – 104.48 

H-bond Acceptor 10 10 67 

H- bond Donor 6 6 52 

GI absorption Low High 

BBB permeation No No 

Leadlikeness No: mw > 350  Yes No: 1 violation: mw > 
350 

Abbott BA 0.55 0.55 

Skin Permeation -7.77  -7.91 cm/s -7.82 cm/s  -7.13 cm/s 

PAINS 1 alert: catechol0 
alert 

0 alert 

 
 MW: Molecular Weight; HBA: Num. H-Bond Acceptors; HBD: 
Num. H-Bond Donors; MR: Molar Refractivity; P-M: Poor-
Moderate; P: Poor; GI: Gastrointestinal; BBB: Blood–Brain Barrier; 
Average of five prediction, 1 violation: MLOGP > 4.15, PAINS: 
Pan-assay Interference Compounds. PPB (Plasma Protein 
Binding); BBB (Blood–Brain Barrier). 
 All the properties of the drugs that are well known and are 
connected to the drug was retrieved from the sever. These 
properties are the adsorption, distribution, metabolism and 
excretion, and these results are mainly based on the following 
parameters: lipophilicity, physicochemical, water solubility, 
pharmacokinetics, druglikeness and medicinal chemistry. The lead 
compounds were analyzed, and their results matched against 
dolutegravir, a drug already in the market, and was used as a 
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control compound for this study. The canonical smiles for 
epicatechin, juglanin, catechin and dolutegravir was retrieved from 
PubChem in order to run each compound to obtain their properties.  
 According to the SwissADME bioavailability colored radar, all 
the lead compounds were structure within the box, showed 
predictions of compounds that can used as suitable drugs 
candidate, hence a further analysis of results was carried out. 
Catechin with a molecular weight of 290.27 g/mol follows the 
Lipinski’s rule with no violation as compared to epicatechin and 
juglanin which both compounds having 6 hydrogen donors and 
hence violating the Lipinski’s rule. Epicatechin and catechin 
revealed the presence of a toxic substance called catechol, which 
when found in small amounts, has no dangerous effects, since it 
occurs naturally in fruits and vegetables(Harel and Mayer, 1971). 
 Catechin and dolutegravir demostrates a high 
gastrointestinal absorption. Having size as its advantage, the 
distribution of catechin through the blood vessels can be predicted 
a compound that can possess minimal resistance to its target, 
bearing in mind the intravascular blood pressure. Capillaries are 
tiny blood vessels, permitting passage of blood cells, hence the 
need to find a suitable drug that can pass through the blood 
vessels without blocking, damaging or breaking the cell 
membrane. Compared to dolutegravir, the lead compound in this 
study have no blood brain barrier (BBB), meaning their movement 
through the a highly selective semipermeable membrane of the 
brain is not restricted, whilst catechin shows low molar refractivity 
as compared to other compounds predicting how easy it be to 
infuse the dipole. Because these compounds show the ability to 
penetrate to form part of the digestive metabolites from the mouth 
to the gastrointestinal (GI) tract through the blood brain barrier, 
these are suitable for oral intake. 
 The druglikenessof these drugsshowed some similarities 
mainly for catechin and juglanin compared to certain components 
of dolutegravir. However, irrespective of epicatechin binding 
outside of the active site of the protein, it still possess important 
feature in some instances, which are similar to that of thecontrol. 
Epicatechin and dolutegravir have the same binding affinity of (-8), 
and they also have the same number of rings. In some instances 
epicatechin falls within the range of dolutegravir and the rest of the 
other compounds. Some of its properties might be of great 
importance in understanding the binding affinity against this 
disease. 
 Water soluble compounds plays a major role in determining 
the outcome of drug development and its activities. Since some of 
these drugs are administered orally, they their success rely mainly 
on the manner in which they dissolve when administered orally. 
Epicatechin and catechin predicted a soluble state when dissolved 
in water. The decimal logarithms of the molar solubility in water 
(log S), was predicted for all the four compounds, with juglanin and 

dolutegravir showing a moderate solubility when dissolved in 
water. 
5.3.6 Docking analysis for lead compounds: 

 

 
A) PubChemID_467296/Epicatechin 

 

 
B) PubChemID_5318717/ Juglanin 

 

 
C. PubChemID_1203/ Catechin 

 

 
D) PubChemID_ 54726191/Dolutegravir 
Figure 4: Binding interaction of epicatechin, juglanin and dolutegravir. 

 
Table 6: The docked Van der Waals, Conventional Hydrogen Bonds, Pi-Sigma, Alkyl, Pi-Alkyl between 1rv7 protein and best three compounds 

 Compounds Van der Waals Conventional H 
bonds 

pi-sigma Alkyl pi-alkyl 

A)  Epicatechin THR91, TRP6, GLN61 LEU5, GLN92, 
ILE72  THR74 

GLY73, THR31, LEU76ASP29, ARG87 LYS48, GLN58, 
ASN30 

ASN88 

B) Juglanin ASN25, ALA82, 
VAL84 

VAL54 PRO81, THR80, 
ALA28 

GLY48 ASP30, ASP29 VAL32 

C. Catechin PHE53, GLY48, 
GLY49THR80, 

ASP30, 
ASP29ILEB47 

PRO81 AlAB28 VALB84 VALB32 

D)  Dolutegravir PRO79, GLY27, 
GLY27ASN25, 
ASN25VAL32 

VALA84 VAL84 ALA28, PRO81, ALA28 THR80, ILE47, 
THR80 

 
 A detailed interaction analysis between the inhibitors and the 
protein residue was made. Table 6, above shows the orientation 
and interaction of these lead phytochemicals compared 
todolutegravir. It can be observed in figure 4, that, juglanin and 
dolutegravir binds inside the protein at the same binding site 
together with dolutegravir.These drugs displays a good pose inside 
the catalytic pocket of the receptor. Juglanin displays the following 
hydrophobic interactive with the following residues:Asn25, Ala82, 
Val84, Pro81, Thr80, Ala28, Gly48 Asp30, Asp29, and Val32, 

whiles dolutergravir shows the following hydrophobic interaction 
Pro79, GlyB27, GlyA27, Ala28, Pro81, ThrB80, ThrA80, and 
Ile47.The interaction between juglanin and the protein shows no 
formation of hydrogen bonds, while dolutegravir forms two 
hydrogen bond with the proteinwith residue:Asn25, Asn25. The 
efficacy of the drug is evaluated based on the formed hydrogen 
bonds (Raj et al., 2020).The Van der Waals, which includes the 
hydrogen bonds, are one of the most important binding forces in 
protein-ligand interaction. 
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 Catechin displays and the protein form three hydrogen bond 
on residue Thr80, Asp30, Asp29 with the following hydrophobic 
interaction Phe53, Gly48, Gly49, Val32.With Epicatechin binding 
outside of the binding pocked it has hydrophobic interactions with 
the following residues:  Thr91, Trp6, Gln61, Gly73, Thr31, Leu76, 
Lys48, Gln58, Asn30, and Asn88. Interestingly, epicatechin forms 
five hydrogen bonds with the following residue: Leu5, Gln92, 

Ile72,Asp29, and Arg87, and has a single pi (Π) bond on residue 
Thr74, and Val54 for juglanin. In most instances, these pi bonds 
are not stronger than sigma (σ) bonds, they are usually weaker. In 
cooperate stability contribution, the stability added by pi bonds is 
lesser than that of sigma bond(Mhatre et al., 2021), (Iheagwam et 
al., 2019).Catechin and dolutegravir, with four pi bonds and 
residue Ile47, Ala28 Val84 Val32 and one pi bond on residue 
Val84, respectively has contributes independently to their 
association with the protein. 
5.4Molecular Dynamics Simulation: A package of the 
Schrödinger, called Desmond LLC, was used for molecular 
dynamics simulation for the three lead phytochemical against the 
control Dolutegravir. Dolutegravir is a drug that is been 
administered to HIV patients in South African health care sector. 
The simulations for Epicatechin, Juglanin, Catechin and 
Dolutegravir were performed for 200 nanosecond to predict a 
ligand biding status along with their trajectories that were analyzed 
using the C-α atom. In molecular dynamics simulation, the RMSD 
was measures between the ligand and the protein. It was used to 
analyze the protein-ligand association and movements of all the 
simulated complexes in order to observe the structural stability 
during the simulation. For the complex to be regarded as functional 
its movements within the hydrated environment plays a vital role in 
the determination of the stability of the complex and catechin 
displayed such interactions as compared to other compounds.   
 Figure 5, Shows the root mean square deviation for 
epicatechin, juglanin, catechin and dolutegravir.Catechin at 25ns 
attained a value of 1.3 Å, while epicatechin displayed a value 0,7 
Åfrom5- 50 ns. Looking into the RSMD pattern of dolutegravir, 
athree-phase pattern is observed with an increase of the RMSD 
value, which one trait the compounds exhibit. This pattern can be 
observed on the other the other compounds in study, as either a 
three-phase pattern or a four-phase pattern, usually in an 
incseasing RMSD value. 
 The protein RMSD maintains equilibrium at the ranges of 
50ns, for epicatechin, juglanin and catechin.At time 50ns the 
protein RMSD for the interaction between juglanin and catechin 
reaches equilibrium until the end of the simulation, whiles 
equilibrium is reached at 115ns and 25ns for dolutegravir and 
epicatechin, with vast deviation between epicatechin and the 
protein between 0 – 75ns. Protein RMSD reached equilibrium at 
2.8 Å at time 50ns for both epicatechin and juglanin.  
 Epicatechin and catechin shows the lowest RMSD of 3,5 and 
3,6 Å respectively, at the end of the simulation, with two main 
observations picked from the molecular docking of these 
compounds, which are: epicatechin binding outside of the binding 
pocket and catechin binding at a location similar to that of 
delutegravir. Dolutegravir had an RMSD of 10,5 Å at the end of the 
simulation. 
 

 
Epicatechin 

 
 Figure 8. Shows the hydrogen bonds and the bond length 
that were formed by the compounds under study and the control. 

Catechin in one of the having the longest bond length of 1.6 at 
residue Asp30 and the second highest bond length that follows, is 
0.9 at residue Asp29, while dolutegravir display its highest bond 
length of 0.2 at residue Asn25. 
 

 
Juglanin 

 

 
Catechin 
 

 
Dolutegravir   
Figure 5: The diagram/s A, B and C: is obtained from Molecular dynamics 
Simulation and is of the root mean square deviation of the C-α atoms of the 
protein and the ligand with time in nano seconds (nsec). In this diagram the 
left γ- axis shows the variation of protein RMSD through time whereby, the 
right γ- axis shows the variation of the ligand RMSD through time. 

 

 
Epicatechin 
 

 
Juglanin 
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Catechin 
 

 
Dolutegravir  
Figure 6: Residue wise Root Mean Square Fluctuation (RMSF) 
 

 
Epicatechin 
 

 
Juglanin 
 

 
Catechin 

 
Dolutegravir 
Figure 7:  Protein Secondary Structures element distribution by residue 
index throughout the protein structure. Blue columns indicates beta-strands, 
red columns indicates alpha helices.  
 

 
 

 
EpicatechinJuglanin 
 

 
 

 
CatechinDolutegravir 
Figure 8: Protein-ligand contact histogram 
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 Interestingly, figure 6 shows similar trajectories between 
juglanin and dolutegravir when the trajectories are saved after 
every 10ps.  This attest to the prediction that juglanin has some 
properties that resemble that of the control. However, the 
fluctuations between catechin are not as high as the one observed 
in the complex between dolutegarvir and 1rv7. Despite the 
similarity of trajectories between the novel compounds and 
dolutegravir, the fluctuations between the control and the protein 
remains a bit high when compared to the rest of the compounds in 
study. 
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