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ABSTRACT 
Plants may not have optimum growth hormone production potential under suboptimal growth and environmental 
conditions. The exogenous application of microbes is a potential and economical source of plant hormones. A 
laboratory trial was performed to evaluate the hormone biosynthesis potential of several soil microbes. Rhizobium 
sp. (Rhizobium trifolii, Rhizobium etli, Rhizobium meliloti, Rhizobium ciceri, Azorhizobium caulinodans, 
Bradyrhizobium japonicum, Rhizobium vulgaris, and Rhizobium phaseoli) were isolated from root nodules of 
various legumes and were biochemically characterized. Absorption spectroscopy (535, 254 and 665 nm λ) was 
used to quantify indole acetic acid (IAA), gibberellin and cytokinin production of different Rhizobium species. B3 
isolate of Rhizobium trifolii had yielded (14.54 and 21.37 µg mL-1) IAA equivalents without and with L-tryptophan 
(L-TRP) supplement, that was statistically at par with same species while significantly greater than other 
Rhizobium isolates. Gibberellin production was found statistically non-significant in all isolates. Rhizobium 
phaseoli (Vp1) yielded 1.68 µg mL-1 cytokinin that was at par with the same species isolates and with Rhizobium 
trifolii but was critically greater in amount than other species. It was concluded that Rhizobium plays a vital role in 
plant growth and development can produce auxin and gibberellins, but some could produce cytokinin. 
Keywords: Phytohormone, Biosynthesis, IAA, PGPR, Auxin, Gibberellins, Cytokinin 

INTRODUCTION 
Plant physiology is influenced by plant growth regulators 
(PGR’s) that are organic substances and their very lesser 
amounts are needed. Normal plant growth and 
development need PGR’s that are being produced by the 
plant itself [1]. However, the plant’s endogenous hormone 
production capacity may not be sufficient for optimal growth 
under suboptimal environment. Exogenous plant hormone 
supplementation may change the endogenous hormone 
level to modify growth and development in the anticipated 
direction and up to the requisite magnitude. Rhizosphere 
residing microflora (symbiotic and free-living) is a probable 
and cost-effective source of these PGR’s. These microbes 
enhance plant growth directly phosphorus solubilization [2] 
and atmospheric nitrogen fixation. PGR’s indirectly 
sequestering iron through siderophore production [3], 
produce appreciable amounts of phytohormones [4] i.e., 
indole acetic acid (IAA) auxins [5], cytokinins [6] and 
gibberellins [7] to boost plant growth. These diazotrophs 
also help in lowering of plant ethylene levels [8].  
 Among the many functions of IAA is the regulation of 
cell division, expansion, and differentiation in plant cells 
and tissues [9]. IAA performs a chief role in the formation 
and extension of xylem and plant root [10]. Biosynthesis of 
auxin is widespread amongst soil residing and plant-
associated microbes. Furthermore, the production of auxin 
is an impacting trait both for plant growth-promoting 
rhizobacteria (PGPR) and plant pathogenic bacteria [11]. 

Auxins are the growth promoters or inhibitors that are 
produced by the plants their selves and by bacteria residing 
rhizosphere. These bacteria became prolific auxin 
producers when provided with L-TRP as precursors [12]. 
These precursors enhance rhizosphere microbiota’s 
hormone production activity and capacity [13. They ensure 
the continuous and optimal provision of active ingredients 
for plant uptake which is exceptionally better than the one-
time massive use of synthetic mixtures [14]. Frankenberger 
and Arshad [14] reported more phytohormones 
concentrations in soils where precursors were exogenously 
applied. 
 Gibberellins, tetracyclic diterpenoids regulate a lot 
many plants physiological and developmental processes 
[15] i.e. germination and emergence of seed [16], leaf and 
stem growth [17], flower and fruit growth [18], root growth 
and root hair abundance, inhibition of floral bud 
differentiation [19], break vegetative and reproductive bud 
dormancy (Bottini et al., 2004) and delay plant leaf 
senescence [20]. Gibberellins were 1st discovered in-filtrate 
of Fusarium moniliforme in 1926 and almost 25 years later 
1st plant gibberellin was discovered from seeds of 
Phaseolus coccineus [21]. However, these are not the sole 
produce of plants and fungi but root and rhizosphere 
residing bacteria also produce gibberellins [22, 23]. In 
bacteria, there is no role of gibberellins, but these 
secretions help in the growth promotion of crop plants [24]. 
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 Cytokinin another plant growth regulator that 
promotes stomatal opening to stimulate shoot growth. 
Higher concentrations of cytokinin have a negative relation 
with root extensions. In drought conditions, cytokinin 
contents decrease resulting in more extended roots but 
shoot growth is redirected away from shoot due to stomatal 
closure [25]. 
 All three hormones are synthesized by the 
rhizosphere inhibiting bacteria and are a major factor 
responsible for interaction with the host plant [26]. Lesser 
amounts of growth regulators are exogenously 
synthesized, but they exert a strong influence on 
morphology and physiology of crop [27]. 
 In the present study, eight Rhizobium spp. have been 
cultured on their respective medium for phytohormone 
production and extraction, as an alternate strategy to 
improve plant growth and development by eliminating the 
usage of synthetic hormones. 
 

MATERIALS AND METHODS 
Three healthy plants from the fields of different legumes i.e. 
(berseem, lentil, mung bean, chickpea, sesbania, soybean, 
common beans, and vegetable pea) grown at farm area of 
Pakistan Agricultural Research Council, Arid Zone 
Research Center, Dera Ismail Khan, were uprooted in the 
respective season while the crop was at flowering stage. 
Plant roots were rinsed with tap water to get rid of mud and 
soil fragments and shifted these washed roots to the 
laboratory. Nodules were separated from roots using a 
sterilized needle. Any remaining contaminant was removed 
from the nodules by immersing them in a 0.5 percent 
sodium hypochlorite solution for 30 seconds before 
washing them with deionized (DI) water. Before being 
soaked in 70 percent ethanol for one minute, they are 
rinsed with DI water again [28]. After washing with DI 
water, they are dried with filter paper in Petri plates. These 
chemically decontaminated pink colored and larger-sized 

nodules were pierced with a decontaminated needle and 
streaked on yeast extract mannitol agar (YMA) media [29] 
plates and incubated at 28 °C for 72 hours. Growth was 
visually observed on Petri plates after 72 hours and fine-
grown clusters were streaked several times until pure, fine, 
and regular colonies were attained. Isolate behavior 
towards different dyes i.e., Congo red, Bromothymol blue 
(BTB) and gram staining was identified using Keneni et al. 
[30] method. Then pure cultures were preserved on slants 
at 4±1 °C for later use. 
 General-purpose media (GPM) (Atlas, 1993) liquid 
culture was prepared and autoclaved at 121 °C 
temperature and 20 lbs/inch2 pressure for 30 minutes. This 
liquid culture was cooled down at room temperature in the 
airflow chamber facing ultraviolet (UV) radiation to avoid 
any contamination. These cultures were shifted to test 
tubes and inoculated with already isolated bacterial 
cultures. Broth cultures were then incubated at 28±2 °C for 
72 hours. An uninoculated standard was kept under the 
same conditions for comparison. These cultures then 
undergo different biochemical investigations i.e. urease 
(phenol red added to broth turns pink show urease activity) 
[31], catalase (air bubble generation with the addition of 3% 
H2O2 shows catalase activity) [32], nitrate reductase 
(addition of 1 mL of (8% N, N-Dimethyl-α-naphthylamine 
(Reagent A) and 6% Sulfanilic acid (Reagent B) solutions 
in 5N acetic acid) to 5 mL of broth, if red color appears in 2 
minutes then nitrate reduction activity is positive) [33], 
citrate utilization (sodium citrate and ammonium as a 
nutrition source and BTB indicator, if medium color 
changes from green to blue is an indication of a positive 
test) [34], starch hydrolysis (Iodine addition gives blue color 
with starch if microbe clear the color means starch 
hydrolysis positive) [35] and motility (motility indole lysine 
(MIL) broth line inoculated, if diffuse cloud appears around 
line then motility positive) [36]. 

 
Table 1. Characteristic activities of different Rhizobium spp. 
RHIZOBIUM 

SPP. 
STRAIN DYES ACTIVITIES 

Congo 
Red 

BTB Gram 
Reaction 

Urease Catalase NO3 
Reductase 

Citrate 
Utilization 

Starch 
Hydrolysis 

Motility 

R. Trifolii B1 +ve +ve -ve +ve +ve +ve -ve +ve +ve 

B2 +ve -ve -ve +ve +ve +ve -ve +ve +ve 

B3 +ve +ve -ve -ve +ve -ve -ve +ve +ve 

R. etli L1 +ve -ve -ve -ve +ve +ve -ve +ve +ve 

L2 +ve -ve -ve +ve -ve -ve -ve +ve +ve 

L3 +ve +ve -ve -ve -ve -ve -ve +ve +ve 

R. meliloti Mb1 +ve +ve -ve -ve +ve +ve -ve -ve +ve 

Mb2 +ve +ve -ve -ve +ve +ve -ve -ve +ve 

Mb3 +ve -ve -ve -ve +ve -ve -ve +ve +ve 

R. ciceri C1 +ve -ve -ve +ve +ve -ve -ve +ve +ve 

C2 +ve +ve -ve -ve +ve -ve -ve +ve +ve 

C3 +ve +ve -ve -ve +ve -ve -ve +ve +ve 

A. caulinodans S1 +ve -ve -ve +ve -ve +ve -ve +ve +ve 

S2 +ve -ve -ve +ve -ve +ve -ve +ve +ve 

S3 +ve +ve -ve +ve +ve +ve -ve +ve +ve 

B. Japonicum Sb1 +ve -ve -ve -ve +ve +ve -ve +ve +ve 

Sb2 +ve -ve -ve -ve +ve +ve -ve +ve +ve 

Sb3 +ve -ve -ve -ve -ve -ve -ve +ve +ve 

R. vulgaris Cb1 +ve +ve -ve +ve +ve +ve -ve -ve +ve 

Cb2 +ve +ve -ve +ve +ve +ve -ve +ve +ve 

Cb3 +ve +ve -ve +ve +ve +ve -ve +ve +ve 

R. phaseoli Vp1 +ve +ve -ve +ve -ve +ve -ve -ve +ve 

Vp2 +ve +ve -ve +ve +ve +ve -ve +ve +ve 

Vp3 +ve +ve -ve +ve +ve +ve -ve +ve +ve 
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 Auxin production (AP) medium (peptone 10 g L-1, 
yeast extract 3 g L-1, tryptone 0.5% with and without L-TRP 
5 g L-1 having pH adjusted 6.9±0.1) was prepared. AP 
medium was inoculated with Rhizobium spp. in 100 mL 
flask and incubated at 28±2 °C @160 rpm for 72 hours. 
Triplicates of each inoculum’s 10 mL were collected after 
72 hours and centrifuged at 1000 rpm for 20 minutes. The 
supernatant was then assayed using Salkovasky’s (50 mL 
35% HClO4 and 1 mL 0.5M FeCl3 solution) reagent with 
pink color after 1-hour dark incubation [37]. Auxin was 
calorimetrically quantified at 536 nm using a UV visible 
spectrophotometer (Spectronic-21). 
 The nutrient medium was inoculated with Rhizobium 
spp. and incubated at 28±2 °C @160 rpm for 72 hours. The 
medium was centrifuged @ 10,000 rpm for 20 minutes and 
the supernatant was collected having an adjusted pH of 2.5 
with 15% HCl. Filtrate extracted with ethyl acetate (1:3 
ratio) to convert gibberellic acid to gibberellenic acid and 
quantified calorimetrically @ 254 nm [38] using UV visible 
spectrophotometer (Spectronic-21). 
 M9 media with (0.2% Casamino acids, 0.01% 
thiamine and 2 pg of biotin) were inoculated with 
Rhizobium cultures and incubated at 28±2 °C @160 rpm 
for 72 hours. Cytokinins were calorimetrically quantified @ 
665 nm [39] using a UV visible spectrophotometer 
(Spectronic-21). 
 

RESULTS 
Data regarding auxin production by various Rhizobium 
strains isolated from root nodules of a variety of crops is 

presented in table 2. Keeping in view the tabulated data it 
was observed that isolates of Rhizobium trifolii (B3, B2 and 
B1) produced higher values of IAA equivalents of the order 
14.62, 14.40 and 13.04 µg mL-1 and the amounts of 
production are more augmented with supplementation of L-
TRP i.e., 21.35, 20.34 and 20.15 µg mL-1, respectively. 
These IAA productions were statistically higher than all 
other isolates and minimal amounts were recorded in the 
isolates of Rhizobium vulgaris. It was observed that all 
selected isolates had produced some amount of IAA and 
the addition of L-TRP had pronounced the production of 
IAA by each isolate. 
 Table-2 also illustrates that each Rhizobium isolate 
had produced some quantity of gibberellins and the 
variation in production of gibberellins by different isolates of 
Rhizobium sp. can also be elaborated from table-2. It was 
observed that Vp3 isolate of Rhizobium phaseoli had 
produced 4.24 µg mL-1 of gibberellic acid that was found 
statistically at par with all of the isolates except B2 isolate of 
Rhizobium trifolii. 
 Production of 3rd major phytohormone (Cytokinin) has 
also been presented in table 2. It can easily be elaborated 
from a table that no or least detectable amounts of 
cytokinin were observed in the isolates of Rhizobium etli, 
Rhizobium ciceri, and Bradyrhizobium japonicum. 
Maximum produce of 1.68, 1.48 and 1.29 µg mL-1

 of 
cytokinin was observed in isolates of Rhizobium phaseoli 
that were statistically similar in production with Rhizobium 
trifolii.  

 
Table 2. Phytohormone production potential of different Rhizobium spp. 

RHIZOBIUM 

SPP. 
STRAIN IAA EQUIVALENTS 

(WITHOUT L-TRP) 
(ΜG ML-1) 

IAA EQUIVALENTS 
(WITH L-TRP) 
(ΜG ML-1) 

GIBBERELLINS 
(ΜG ML-1) 

CYTOKININ 
(ΜG ML-1) 

R. Trifolii B1 13.04±0.07 b 20.15±0.28 a 2.36±0.24 ab 1.12±0.24 a-c 

B2 14.40±0.24 a 20.34±0.04 a 1.27±0.15 b 1.13±0.25 a-c 

B3 14.62±0.22 a 21.35±0.21 a 1.52±0.15 ab 1.19±0.27 a-c 

R. etli L1 9.17±0.25 d 18.19±0.36 b 2.61±0.29 ab 0.00±0.00 e 

L2 8.09±0.10 f 17.44±0.14 bc 2.51±0.25 ab 0.00±0.00 e 

L3 8.65±0.07 d-f 17.65±0.12 bc 2.82±0.14 ab 0.00±0.00 e 

R. meliloti Mb1 9.08±0.05 d 14.63±0.08 de 2.49±0.26 ab 0.82±0.18 b-e 

Mb2 8.95±0.12 de 13.45±0.24 ef 2.29±0.24 ab 0.75±0.17 b-e 

Mb3 8.98±0.05 de 15.01±0.01 d 2.55±0.25 ab 0.84±0.18 b-d 

R. ciceri C1 11.35±0.05 c 16.57±0.24 c 2.82±0.32 ab 0.01±0.00 e 

C2 11.87±0.09 c 17.24±0.09 bc 2.93±0.30 ab 0.03±0.00 de 

C3 11.73±0.06 c 17.00±0.10 bc 2.89±0.27 ab 0.00±0.00 e 

A. caulinodans S1 8.09±0.03 f 12.92±0.41 fg 2.19±0.23 ab 0.72±0.17 b-e 

S2 8.17±0.04 ef 12.85±0.14 fg 2.19±0.24 ab 0.72±0.17 b-e 

S3 8.04±0.02 f 12.48±0.29 fg 2.85±0.13 ab 0.90±0.07 a-c 

B. Japonicum Sb1 3.63±0.33 i 7.35±0.61 ij 2.32±0.42 ab 0.07±0.06 de 

Sb2 5.08±0.05 h 7.88±0.10 i 2.58±0.66 ab 0.02±0.00 de 

Sb3 4.64±0.06 h 7.82±0.21 i 2.55±0.61 ab 0.03±0.00 de 

R. vulgaris Cb1 2.80±0.40 ij 5.58±0.60 k 1.94±0.73 ab 0.58±0.17 c-e 

Cb2 2.60±0.24 j 5.91±0.10 k 1.97±0.56 ab 0.60±0.12 c-e 

Cb3 3.11±0.10 ij 6.04±0.15 jk 1.97±0.50 ab 0.60±0.10 c-e 

R. phaseoli Vp1 6.35±0.02 g 10.83±0.10 h 3.59±0.99 ab 1.68±0.10 a 

Vp2 6.29±0.03 g 11.60±0.27 gh 3.83±1.04 ab 1.48±0.27 ab 

Vp3 6.24±0.11 g 12.83±0.08 fg 4.24±1.16 a 1.29±0.23 a-c 

DISCUSSION 
The current study was conducted to evaluate the capacity 
of various Rhizobium sp. to secrete different 

phytohormones. It was observed that all selected isolates 
had auxin and gibberellin producing capacity and the 
produce of IAA was additionally pronounced with the 
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addition of L-TRP. It was also observed that isolates of 
Rhizobium etli had not produced cytokinin while Rhizobium 
ciceri and Bradyrhizobium japonicum had produced very 
little amounts of cytokinin. To analyze biochemical features 
isolates had gone through different biochemical tests i.e. 
Dyes reaction (bromothymol blue test, congo red test, and 
gram reaction) and biochemical activities (urease, catalase, 
NO3 reductase, citrate utilization, starch hydrolysis, and 
motility). 
 The use of PGPR to attain sustainable yield, plant 
nutrient uptake, and soil management has been becoming 
an emerging approach in modern agriculture from previous 
some decades [40]. Rhizobia are symbiotic partners of 
legumes but also can work as PGPR for cereals helping 
them through pronouncing growth mechanisms i.e. 
lumichromes production to help roots in CO2 assimilation 
[4], riboflavin production to stimulate respiration of roots 
[41], root morphology improvement [42], root-soil 
adherence [43], increased nutrient availability (N & P) [44], 
siderophore production (Fe availability) [45], 
exopolysaccharides production [46] plant defense 
(Biocontrol) [47] and growth hormone release [48]. Among 
different growth regulator i.e., auxin, gibberellin, cytokinin, 
abscisic acid and ethylene [13, 49], auxin and gibberellin 
play vital role in plant-microbe continuum, and plant growth 
and development [50]. Auxin promotes the elongation of 
cells through expansion [51]. PGPR released growth 
regulators play a substantial role in the division of cells in 
root and cell differentiation that enhance the shoot growth 
of plants [52]. In the present research studies, Rhizobium 
species were isolated from their respective legumes and 
were assayed for auxin, gibberellin, and cytokinin 
producing efficiencies that can improve plant growth and 
development. Our observation regarding different plant 
hormones is closely related to previous investigations to 
assess the phytohormone producing capability of various 
rhizobacteria to enchant plant growth [53, 54].  
 

CONCLUSION 
Microorganisms play a pivotal role in the growth and yield 
of the plants improving the materials required. It is 
concluded from the facts from the table that Rhizobium 
spp. isolated from the Berseem and Chickpea has 
produced significantly higher amounts of auxin. While in 
case if these are aided with the precursor then the 
production is also enhanced as compared to that of the 
non-treated. 
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