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ABSTRACT 
The review is devoted to the diagnostic and prognostic role of cardiotrophin-1 (CT-1) in patients with acute and 
chronic heart failure (CHF). The article provides information on the main regulatory effect of CT-1 in relation to the 
processes of cardiovascular remodeling. We considered the prospects of monitoring the plasma concentration of 
CT-1for the individualization of the assessment of cardiovascular risk in patients with CHF at various stages of the 
cardiovascular continuum. 
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INTRODUCTION 
In evolution, the human myocardium acquired the 
adaptation to stress and overload using hypertrophic 
growth, a process that can be “useful” (physiological 
hypertrophy) or pathological. An important distinguishing 
feature of pathological hypertrophy is mismatch between 
the increase in the thickness of the myocardial wall and the 
increase in contractile function. The mechanisms 
responsible for this or that type of hypertrophy interact 
closely and constantly compete with each other. So, almost 
all the mechanisms leading to pathological hypertrophy are 
compensatory in nature and at a certain stage in the 
development of the cardiovascular continuum can improve 
cardiac activity. However, these same mechanisms can 
ultimately lead to fibrosis, which plays a special role in the 
development and progression of chronic heart failure (CHF) 
[1, 2]. There is an increasing number of studies indicating 
that the development of СHF (especially in patients with 
preserved ejection fraction) begins with a phase of 
systemic and cardiac inflammation, leading to an increase 
in the deposition of extracellular matrix and the 
accumulation of collagen in the interstitial and perivascular 
spaces [3, 4]. This process is associated with increased left 
ventricular (LV) stiffness, diastolic and systolic dysfunction, 
and is also associated with a higher risk of hospitalization 
and cardiovascular death [5, 6]. 
 One of the proteins that regulate the physiological 
growth and vascularization of the myocardium is 
cardiotrophin 1 (CT1), which is a protein with a molecular 
weight of 21.5 kDa. The coding region of CT-1 is located on 
three exons of the human chromosome 16p11.1-16p11.2. 
The similarity of these amino acid compositions indicates 
that CT-1 is a member of the cytokine family. According to 
modern concepts, it belongs to the interleukin-6 (IL-6) 
superfamily, has pronounced promitotic and proliferative 

properties, the ability to induce hypertrophy and 
hyperplasia of cardiomyocytes both in vivo and in vitro. 
 It is known that IL-6 is an intercellular interaction 
protein (cytokine) secreted during inflammation [7]. Its 
secretion is regulated according to the principle of positive 
feedback by catecholamines, the concentration of which in 
the blood of patients with CHF is significantly increased 
due to the activation of the sympathoadrenal system. The 
interaction of IL-6 with transmembrane receptors promotes 
homodimerization of another receptor, gp130, which 
triggers a signal transduction cascade. 
 The function of CT-1 is realized in a different way, 
which is capable of activating gp130 without prior 
interaction with other receptors (which are absent in 
cardiomyocytes). Ultimately, intracellular signaling 
mechanisms are activated in myocardial cells that 
implement all the biological effects of CT-1 [8,9]: mitogen-
activated protein kinases – MAPK, dual specificity kinases - 
MEK1 and MEK5, the Janus kinase system / signal 
transducer and activator of transcription - JAK / STAT, 
nuclear transcription factor - Nf-kB To date, it has been 
established that the antiapoptic effect of CT-1 is achieved 
mainly due to the activity of p38 and p42/44 subunits of 
MAPK, while stimulation of cell growth and hypertrophy of 
cardiomyocytes is carried out with the involvement of 
alternative mechanisms, such as JAK / STAT, NF-κB or 
MEK- kinase / kinase c-Jun NH2-terminal protein 
[10,11,12,13]. Thus, CT-1 is capable of initiating myocardial 
hypertrophy and hyperplasia, as well as exerting an 
antiapoptic effect on cardiomyocytes. The main goal of the 
listed physiological effects of CT-1 is a cardioprotective 
effect at the initial stages of CHF formation in various 
pathological conditions of the heart muscle. However, the 
expression of the gp130 ligand for CT-1 on the surface of 
cardiomyocytes is regulated according to the “up and 
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down-regulation” mechanism, the principle of which is 
based on the cell's ability to independently change the 
number of receptors on it in response to the content of 
biologically active substances in the blood. All this is a 
reflection of the potential for "switching" the direction of 
intracellular signaling intensification from cardioprotective 
effects to stimulation of excessive remodeling [14]. Based 
on this, all intracellular signaling mechanisms mediated by 
regulatory enzymes such as MAPK, MEK1 and MEK5, JAK 
/ STAT and Nf-kB cannot be called cardioprotective without 
a doubt [15, 16]. 
 When inducted the physiological hypertrophy, CT-1, 
both in vitro and in vivo, caused predominantly an increase 
in the length of cardiomyocytes. The effect of CT-1 on the 
myocardium is carried out through limited activation of 
caspase 3 and caspase 9 (not maximally pronounced). In 
turn, the activation of these caspases leads to an increase 
in the transcriptional response of Mef2-, NF-κB- and 
STAT3-dependent signal transmitters. It is STAT3, in 
contrast to STAT1, that is responsible for the anti-
inflammatory effect and promotes the survival of myocardial 
cells [17]. The above signaling pathways are elements of a 
cascade triggered by cell apoptosis, but their limited 
activation leads to favorable remodeling. 
 The administration of human CT-1 in animal models 
made it possible to establish that CT1 is responsible for 
reversible physiological hypertrophy and reversible 
angiogenesis. When the administration of this protein is 
stopped, these parameters of the myocardium return to 
their previous state. These results suggest that CT1 
promotes the secretion of angiogenic factor by 
cardiomyocytes [18]. 
 As mentioned previously, a chronic increase in the 
level of CT-1 in the plasma of patients with cardiovascular 
diseases (CVD) acquires the inverse significance for the 
prognosis. In the studies by Cottone S. et al., it was found 
that in patients with hypertension, accompanied by LV 
hypertrophy (LVH), the level of CT-1 was higher than in the 
control group of healthy people [19]. At the same time, on 
the background of antihypertensive therapy, a decrease in 
the level of CT-1 was noted, which could reflect the reverse 
development of LVH. Therefore, monitoring CT-1 in the 
management of patients with hypertension allows us to 
assess the cardioprotective effect of the treatment used 
[20, 21].  
 Moreover, increased levels of CT-1 are also 
determined in patients with hypertrophic and dilated 
cardiomyopathies, acute myocarditis, regardless of the 
severity of LVH and myocardial dysfunction [22, 19, 23]. It 
was found that a high value of CT-1 in blood plasma is 
associated with the existing of LVH, regardless of 
concomitant comorbid pathology: hypertrophic 
cardiomyopathy, dilated cardiomyopathy, hypertension, 
aortic stenosis and mitral regurgitation [24, 19, 23]. Based 
on these data, it can be concluded that the concentration of 
CT-1 can be considered as an independent marker of 
myocardial hypertrophy in cohorts of patients with various 
CVD [24].  
 Under conditions of biomechanical stress caused by 
pressure or volume overload, the synthesis of CT-1 
increases, as a result of which myocardial defense 
mechanisms are activated. But excessive neurohumoral 

activation ultimately leads to maladaptive remodeling of the 
LV and, accordingly, the progression of CHF [25]. 
 The connection between CT-1 and the processes of 
myocardial fibrosis is also worth nothing. Prolonged 
systemic hypertension leads to excessive deposition of 
type I and type III collagen fibers in the interstitium and 
perivascular region of the myocardium. This is partly due to 
hyperactivation of the renin-angiotensin-aldosterone and 
sympathoadrenal systems. They initiate the synthesis of 
CT-1 in cardiomyocytes, which has a profibrotic effect. In 
turn, myocardial fibrosis is one of the main factors in the 
development and progression of heart failure. At the same 
time, diastolic dysfunction, deterioration of contractility with 
the formation of systolic dysfunction, the development of 
cardiac arrhythmias and coronary blood flow impairment 
are observed [26]. 
 In vitro and in vivo, it was confirmed that CT-1 
stimulates not only the differentiation of cardiac fibroblasts 
into myofibroblasts, which is assessed by an increase in 
the expression of α-smooth muscle actin α-SMA, but also 
the expression of mRNA of type I and III collagen [27]. It 
was found that the concentration of CT-1 in the 
myocardium and blood plasma in patients with CHF was 
higher (p <0.001) compared with the control group, as well 
as the volume fraction of collagen according to 
endomyocardial biopsy. In addition, the highest CT-1 
values in the myocardium were obtained in patients with 
CHF with a reduced ejection fraction (CHFrEF), which 
correlated with the values of myocardial fibrosis biomarkers 
(PICP –carboxyterminal propeptide of type I procollagen 
and PIIINP - N-terminal propeptide of procollagen type III). 
 CT-1 is involved in the development of vascular 
endothelial dysfunction [28]. In the endothelium, biologically 
active substances are formed that participate in the 
regulation of blood coagulation, vascular tone and the 
development of the vascular wall. It was found that with the 
development of atherosclerosis, CT-1 initiates the 
synthesis of monocytic chemotactic protein-1 (MCP-1) by 
endotheliocytes, which promotes the activation and 
migration of leukocytes to the inflammation focus in the 
vascular wall. Atherosclerosis, in turn, is one of the most 
important causes of hypertension and coronary heart 
disease (CHD), which often lead to the development of 
CHF. At the same time, impaired endothelial function 
contributes to a further decrease in EF and progression of 
CHF [29]. Also, CT-1 stimulates TNF-α production by 
peripheral circulating monocytes. In turn, TNF-α supports 
the maintenance of the inflammatory process in the 
vascular wall even in the absence of antigenic stimulation 
and severe microcirculation disorders [30, 31]. The process 
of vascular remodeling is also regulated by phosphorylation 
of the aforementioned 42/44 and p38 MAPK subunits [32]. 
The result of this chemical transformations is proliferation, 
hypertrophy and an increase in the production of 
extracellular collagen matrix, an increase in systemic 
vascular resistance, as well as regulation of the growth and 
destabilization of atheroma. Thus, endothelial dysfunction 
in CHF serves as a marker of a negative clinical outcome 
[33]. 
 In studies by Zolk et al, it was found that CT-1 
significantly suppresses myocardial contractility in direct 
proportion to its concentration in blood plasma in patients 
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with CHF [34]. Therefore, the constantly increased 
synthesis and release of CT-1 accelerates the development 
of contractile dysfunction and the progression of CHF. At 
the same time Talwar et al. reported that the concentration 
of CT-1 in plasma in healthy people is ~ 10-50 pM and 
increases to 30-500 pM in patients with LV systolic 
dysfunction [35]. 
 In a study by Tsutamoto et. al. [25], which involved 
125 patients with CHF with LVEF<45%, a negative 
correlation was found between the level of CT-1 and LVEF. 
The concentration of CT-1 in plasma and soluble gp130 
increased with the severity of CHF, which is confirmed by 
the studies of Zolk et al [13] 
 Thus, this literature review reflects the biological role 
of CT-1 in the regulation of hypertrophic growth and the 
development of cardiac fibrosis, as well as the possibility of 
its use as a diagnostic biomarker of the early stages of 
CHF, monitoring the effectiveness of treatment of 
hypertension, CHD and CHF. 
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