ORIGINAL ARTICLE

Hepatoprotective Effect of Flaxseed Oil on Hypercholesterolemia Induced Hepatotoxicity

MIAN AZHAR AHMAD¹, RASHID ANJUM², M. EHSANUL HAQ³, NAWAB MOHAMMAD KHAN⁴

ABSTRACT

Aim: To prove the effects of flaxseed oil on hypercholesterolemia induced hepatotoxicity

Methods: Thirty two male rabbits, each fifteen hundred grams weight, mean age of 4 months, were classified into 3 categories. Group 1 administered standard diet in addition half % of lipid dehydrated egg origin, in a course of 64 days. Category two received similar food during initial 32 days, eight milligram per kilogram of baseline flaxseed was also given during upcoming days, Category three was given last category enhanced food in full duration of study. Hypercholesterolemia induced hepatotoxicity was evaluated, serum parameters of total cholesterol, low density lipoprotien, cholesterol, high density lipoprotien, lipids, whole pectrum was evaluated.

Results: Elevated amount of full lipid profile was determined in either category least changes were observed in group three, (p=0.002). Identical changes found present as amount of low density lipoprotien, cholesterol were assessed (p=0.001). The lowering of triglyceride levels at termination of research work in G3 (p=0.008). Variation was observed amongst hypercholesterolemia induced hepatotoxicity and serum parameters of total cholesterol, low density lipoprotien, cholesterol, high density lipoprotien, cholesterol, triglycerides, body weight, groups, Induced reduction was not found to be statistically significant.

Conclusion: Flaxseed has beneficial effects in hypercholesterolemia-induced hepatotoxicity as well as in diseases that have risk factors for the development of the disease.

Keywords: Hypercholesterolemia, Hepatotoxicity, Flaxseed, Experimental study, Functional food

INTRODUCTION

Flaxoil, an ancient medicine and modern functional food, is emerging as an important functional food ingredient because of its rich contents of α -linoleic acid (ALA, omega-3 fatty acid), lignans, and fiber. The flaxseed oil played a worthy role on liver diseases (nonalcoholic) and on the lipid contents of rabbits who are high on cholesterol. Wide range of better outcomes related to the health have been found associated with flaxseed oil, fibers, lignans of flax. Specifically mentionable clinical settings in this regards is in lowering angina pectoris and other heart related disorders like narrowing and hardening of blood vessels, syndrome of elevated blood glucose level, growth, joint pains/achs, resorption and softening of bones, diseases of immune system, diseases of nervous systems. Flaxseed oil has proved to be of immense assistance in protecting management of cardiovascular disorders precipitating better outcomes in immune working of body. As a functional food ingredient, flax or Flaxseed oil plays a vital role in bakery items diets, fruit mixtures, milk and milk items, muffins, dehyltingdrated pasta items, macaroni/meat items. Current research results play a part to prove possible anticipated better health outcomes resulting from flaxseed².

A large number of acquired and inherited liver diseases are related to metabolism dysfunction. The hypercholesterolemia induced hepatotoxicity which is lipid deposition hepatic problem due to any factor but not due to sedatives. This is frequently observed problem with the intracellular catabolism and anabolism and is featured by the liver steatosis in people who are either scanty users of alcohol or does not use it at all. There has been high index of incidence suspicion about the of hypercholesterolemia induced hepatotoxicity not it is frequently encountered long standing hepatic issue in the European community's cases have been reported in our part of the globe as well. Hypercholesterolemia induced hepatotoxicity includes isolated steatosis associated with trivial or aggressive infection plus 'steatohepatitis'. 'Bland steatosis' stays asymptomatic for years and months and does not turn into chronicity³.

Comparatively hypercholesterolemia induced steatohepatitis remains an entity characterized by liver cell insult resulting into fibrosis of the liver in

Correspondence to Dr. Mian Azhar Ahmad Email: drazharahmad@hotmail.com

¹Department of Anatomy, Sahiwal Medical College Sahiwal,

²PGR Master in Public Health Education, University of Health Sciences Lahore,

³Consultant Physician, Federal Government Polyclinic Hospital (PGMI)/Shaheed Zulfiqar Ali Bhutto University Islamabad, ⁴Professor of Anatomy (ex-Hec-TTP), Department of Anatomy, King Edward Medical University Lahore

15% of patients. Characteristic presentation of Hypercholesterolemia induced steatohepatitis is swelling of liver cells small areas of liver parenchymal infection plus 'steatosis'. As the sickness advances, cirrhosis appears. Hypercholesterolemia induced steatohepatitis influences both genders similarly, the clinical picture has link with weight of the patient and with "metabolic syndrome" further featured by disturbed levels of cholesterol, deranged levels of insulin in blood, and insulin intolerance⁴.

Hypercholesterolemia induced steatohepatitis has been observed predominantly in overweight people and this link has been strongly documented. The "Metabolic syndrome" is another a compliment with hypercholesterolemia induced steatohepatitis where it has been observed that the CVS disease leads to catastrophe in hypercholesterolemia induced steatohepatitis⁵. The reversal of the steatohepatitis leading to cirrhosis is the ultimate target of the regime. Reduction of weight, lowering increased cholesterol in the blood and management of the insulin intolerance lead to the better clinical outcomes⁶. It has been scientifically proved based o observatory finding that inclusion of flaxseed in routine daily diet leads to favorable clinical settings oil. Hypercholesterolemia¹.

Many brands of eatables containing "n-three fat products, sterol esters of botny origen, plus vegetable stuff" many brands have been tried to hault narrowing of the blood vessels due to deposition of cholesterol in tunica media of the arteries. In this context world health organization ranks the flaxseed quite high to lower down the risk of atherosclerosis. Mixture of linolenic acid, lignans, and soluble fibers is the main factor in the food for better outcomes principally for the myocardium.

MATERIALS AND METHODS

Thirty two white adult male rabbits, mean age of 4 months were selected for current research work. The study was performed in Zoology Department of University of the Punjab, having ideal environment living conditions for rabbits. Rabbits were classified into three groups, spanning to duration of 8 weeks, Group I (Control group) eleven rabbits; Group II, 11 animals, in them flaxseed was given diet initial half of duration. In Category 3, thirteen animals were administered full duration of research work with flaxseed. During the 57-day research work, rabbits belonging to GI were given unique food "Nuvilab", with one percent lipid of origin dried egg. That food "Nuvilab" did not change cholesterol anabolism and

catabolism of rabbits. Category 2 were administered, from 5th week onwards, in addition to standard food, eight milligram per kilogram flaxseed. Category 3 were given Category 2, second food of full duration. Hepatic surgery of animals were done on 57th day. Ketamine 30mg/kg plus intramuscular xylazine 6mg/kg. After study, animals were sacrificed as barbiturate was given.

Laboratory investigations: Serum was taken by putting needle directly into heart on day one of research and 2nd sample just prior to sacrifice. The blood chemistry involved full lipid profile, HDL, LDL and triglycerides were tested in Laboratory. Recommended methods were used to take measurements.

Miccroscopic survey: Hepatic slides were formed by fixing with ten percent formaldehyde buffered phosphate pH=7.6, later covalently bounded with paraffin. Total of 3 pieces and 2 microscopic sections were made, First section was taken from left medial hepatic lobe sample, 2nd from under surface hepatic lobe. In first piece E/H staining was used in 2 pieces "periodic acid Schiff/Gomori's trichrome" stain were used. Microscopic examination was performed for steatosis, hepatic lobe infection, liver cell ballooning, fibrosis status.

Statistical analysis: Percentages represented categorical variables, Average±Standard deviation represented continuous variables Shapiro-Wilks test was put into use for assessing sample normality. Student t-test for quantitative parameters, Mann-Whitney nonparametric test was put into use for comparative study amongst different categories. P value<0.05 was taken as statistical significance. Fisher's exact test instituted for comparisons amongst more than two categories. Bonferroni was used to understand parameters of significance. p<0.05 was considered significance.

RESULTS

Rabbits weight gain was documented to be similar among groups between baseline and euthanasia (Table 1), but isolated assessed, p<0,001 was adjusted value of statistical significance amongst basal weight verses euthanasia's weight. With reference to lipid profile, significant difference amongst different categories was depicted as measurements were taken of full ranges lipids, low density lipoprotein-lidids, plus high density lipoprotein lipids (Tables 2-3).

Table 1: weight changes amongst different categories

Weight Category		No.	Mean ± Standard deviation	P	
	Group I	11	1882±267		
Basal (B)	Group II	10	1876±209	0.268	
	Group III	11	2053±345		
	Group I	11	2975±165		
Euthanasia (E)	Group II	10	3154±268	0.367	
	Group III	11	3080±380		
	Group I	11	1120±277		
Difference (E-B)	Group II	10	1280±204	0.071	
	Group III	11	1015±244		

Table 2: Lipid profile at baseline (T0) and euthanasia (T8)

Variable	G1 - T0 Mean±SD	G1-T8 Mean±SD	G2 - T0 Mean ± SD	G2 - T8 Mean ± SD	G3 - T0 Mean ± SD	G3-T8 Mean±SD	p value G1xG2xG3
Total cholesterol	74.7±35.6	651.2±369.2 Variation G1 570.4±368.6	72.9±26.2	733.8±260.8 Variation G2 659.2±252.6	63.9±16.8	319.6±213.4 Variation G3 258.2±206.5	T0: 0.439 T8: 0.08 0.08
LDL- cholesterol	33.7±32.5	602.3±369.2 Variation G1 569.5±367.3	32.4±23.4	693.9±256.2 Variation G2 662.8 ±248.4	13.9±7.8	292.6±209.3 Variation G3 279.2±204.7	T0: 0.086 T8: 0.03 0.02
HDL- cholesterol	22.2±10.2	22.6±9.6 Variation G1 3.4±10.9	19.9±5.6	18.9±5.7 Variation G2 -2.3±6.9	23.5±4.7	14.0±2.9 Variation G3 -8.3±5.5	T0: 0.0379 T8:0.04 0.023
Triglycerides	97.7±41.5	64.8±24.9 Variation G1 -35.6±50.9	115.3±34.4	86.9 ± 35.2 Variation G2 -21.9 ± 46.5	159±86.2	62.7±29.8 Variation G3 -96.3±97.6	T0:0.049 T8:0.172 0.155

Table 3: Results of histological analysis

Item	Definition	Score	G1	G2	G3
	< 2%	0	28.28%	10%	36.36%
Steatosis disorder	5 to 32%	1	64.65%	70%	63.64%
Steatosis disorder	33 to 66%	2	8.11%	20%	-
	> 66%	3	-	-	-
Cibrosia arada	nill	<u> </u>	81.82%	100%	81.82%
Fibrosis grade	Parallel to sinusoid, parallel to portal	1	18.18%	-	18.18%
	No foci	-	90.91%	70%	72.73%
Lobular inflammation	<2 foci per 200x field	1	9.09%	30%	27.27%
Lobular inilammation	2-4 foci per 200x field	2	-	-	-
	>4 foci per 200x field	3	-	ı	ı
	None	-	-	-	-
Hepatocellular ballooning	Few balloon cells	1	72.73%	60%	36.36%
,	Many cells/ prominent ballooning	2	27.27%	40%	63.64%

DISCUSSION

Hypercholesterolemia induced steatohepatitis has been found to be frequently occurring hepatic problem universally epidemiology steatohepatitis Hypercholesterolemia induced affected cases is on the increase. 10 This is speculated to be hepatic manifestation of metabolic syndrome. Hypercholesterolemia induced hepatotoxicity has normal links to insulin resistance and metabolic syndrome be its chief part. Hypercholesterolemia induced steatohepatitis, presently has been documented to be an established clinical setting.¹¹ In progression of disease presence of large amount of fat in cytoplasm of liver cells have documented, and oxidative been pressure precipitating fat peroxidation, that stimulates proinflammatory cytokines¹². No drugs are yet available hypercholesterolemia manage hepatotoxicity or hypercholesterolemia induced steatohepatitis. Basis of treatment is symptomatic relief, reduce weight, manage insulin resistance, lower plod pressure, dyslipidemias-particularly hypertriglyceridemia. 13 Alpha-linolenic fatty acids, is maximally present in larger quantities in flaxseed which makes it storehouse of animal lignan precursors, e.g. secoisolariciresinol diglucoside, pinoresinol, matairesinol, lariciresinol. Flaxseed has properties to act against oxidation, anti-growth, antimitotic, to act against female hahmones like estrogen, to act against aromatase, then having activity against formation of blood vessels, so very effective in hypercholesterolemia induced hepatotoxicity¹⁴. It secoisolariciresinol diglucoside hypercholesterolemia

lowers elevated cholesterol parameters in animals, that was managed via diet which contained elevated levels of lipids. Another research work done by Carter¹⁵ stated that in comparison to a placebo, giving 100mg of secoisolariciresinol diglucoside consequence as remarkable lowering of LDL/HLD cholesterol ratio, and of the levels in AAT and GGTP, but those levels were elevated in hypercholesterolemia induced hepatotoxicity.

In current research work we found significant elevation of lipid profile during whole period in all categories, plus category three (food I association flaxseed addition from very beginning), that change remained lesser verses various categories. Identical findings were noted in association with low density lipoprotien^{16,17}. It was found that 12-week addition with flaxseed, plus a schedule of altering manners of life, markedly lowered presentation of metabolic syndrome, like lowering weight, measurement of abdominal diameter, lipid profile, low density lipoprotein, apolipoproteins B&E, vascular pressure 18 About high density lipoprotein findings were that nill marked variation amongst different categories, it was proven in our research work, documented high density lipoprotein lowered in category three in conclusion of work. Meta-analysis by Bueno-demesquita et al²⁰ documents that role of flaxseed in triglyceride levels found G84.

It is observed that in human studies better outcomes in steatosis remained linked to correction of cholesterol abnormalities plus various diseases in line to metabolic syndrome and diseases causing oxidative stress larger samples More research required for longer studies and larger samples.²¹ Birok et al²² put forwards the comparison to placebo, giving 100mg in SDG consequence as a marked lowering in low density lipoprotien/high density lipoprotien cholesterol ratio, amount of alanine gamma-glutamylaminotransferase/ and transpeptidade, all of them are classically elevated in microscopic range in hypercholesterolemia induced hepatotoxicity. Significant variation between groups of hypercholesterolemia induced hepatotoxicity activity parameter plus isolated segments of hypercholesterolemia induced hepatotoxicity activity score, that lowering was not significant statistically, indicating that flaxseed did not lower severity of steatosis in animals given food containing high levels of lipids as half percent liquid squeezed eggs²³. All depends upon ample size and duration of research work. We prove better outcome of flaxseed in managing lipid problems linked hypercholesterolemia induced hepatotoxicity, but remained not effective in lowering liver steatosis.2 Agular et al²⁵ concluded that measurement hepatic function indicated an enhanced activity of gamma-

glutamyl transpeptidase, but aminotransferase es remained unaffected. So it is stated that flaxseed brings about better outcome to protect and then halts progression of hepatic insult. On the basis of biochemical, hematological and histopathological assessments received, we postulate beneficial outcomes of flaxseed in mankind, as pathogenesis and dynamics inflammatory insult in man and rabbits are identical. Yet another research work conducted by Aldercreutz²⁶ stated that flaxseed reduced low density lipoprotien-cholesterol and total cholesterol. This is stated that atherosclerotic process was minimally affective in category that got seed verses class that did not.

CONCLUSION

Our results are Identical and comparable to international research, It is documented that administration of flaxseed brings about better outcomes of fat and fat metabolism products in blood plus low density lipoprotien-lipid, flaxseed protects also halts advancement of disease process of hypercholesterolemia induced hepatotoxicity.

REFERENCES

- Cardozo LFMDF, Chagas MA, Soares LL, Troina AA, Bonaventura GT. Exposure to flaxseed during lactation does not alter prostate area or epithelium height but changes lipid profile in rats. Nutr Hosp 2010;25(2):250–55.
- Boden-Albala B, Cammack S, Chong J, Wang C, Wright C, Rundek T, Elkind MS, Paik MC, Sacco RL. Diabetes, fasting glucose levels, and risk of ischemic stroke and vascular events: findings from the Northern Manhattan Study (NOMAS). Diabetes Care 2008;31:1132–7.
- Bozan B, Temelli F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour Technol 2008;99(14): 6354– 9.
- Chung MWY, Lei B, Li-Chan ECY. Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L). Food Chem 2005;90:271–9.
- Chen J, Saggar JK, Corey P, Thompson LU. Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr 2009;139:2061–6.
- Caston LJ, Squires EJ, Leeson S. Hen performance, egg quality, and the sensory evaluation of eggs from SCWL hens fed dietary flax. Can J Anim Sci 1994;74:347–53.
- Bloedon LT, Balikai S, Chittams J, Cunnane SC, Berlin JA, Rader DJ, Szapary PO. Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. J Am Coll Nutr 2008;27(1):65–74.

- Barre DE, Mizier-Barre KA, Griscti O, Hafez K. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics. J Oleo Sci 2008;57(5):269–73.
- Aguirre DB, Canovas GVB. Fortification of queso fresco, cheddar and mozzarella cheese using selected sources of omega-3 and some nonthermal approaches. Food Chem 2012;133(3):787–97.
- Ahn DU, Sunwoo HH, Wolfe FH, Sim JS. Effects of dietary alpha Linolenic acid and strain of hen on the fatty acid composition, storage stability and flavor characteristics of chicken eggs. Poult Sci 1995;74:1540–47.
- Chen J, Power KA, Mann J, Cheng A, Thompson LU. Flaxseed alone or in combination with tamoxifen inhibits MCF-7 breast tumor growth in ovariectomized athymic mice with high circulating levels of estrogen. Exp Biol Med 2007;232:1071–80.
- Chen J, Saggar JK, Ward WE, Thompson LU. Effects of flaxseed lignan and oil on bone health of breasttumor-bearing mice treated with or without tamoxifen. J Toxicol Environ Health 2011;74(12): 757–68
- Chen J, Saggar JK, Corey P, Thompson LU. Flaxseed cotyledon fraction reduces tumour growth and sensitises tamoxifen treatment of human breast cancer xenograft (MCF-7) in athymic mice. Br J Nutr 2011;105;339–47.
- Choo WS, Birch J, Dufour JP. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J Food Compos Anal 2007;20(3):202–11.
- Carter JF. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Food World 1993;38(10):753–9.
- Bell A, McSteen PM, Cebrat M, Picur B, Siemion IZ. Antimalarial activity of cyclolinopeptide A and its analogues. Acta Pol Pharm 2000;57: 134–6.
- Baggio B, Musacchio E, Priante G. Polyunsaturated fatty acids and renal fibrosis: pathophysiologic link and potential clinical implications. J Nephrol 2005;18:362–7.

- Barakat LAA, Mehmoud RH. The anti-atherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on Hypercholesterolemic rats. N Am J Med Sci 2011; 3(9):351–7.
- Best D. Low-carb revolution fuels innovation with flaxseed [2004]. Functional ingredienthttp://newhope360.com/conditions/lowcarbrevolution-fuels-innovation-flaxseed Last accessed 21/05/2012
- Bueno-de-Mesquita HB, Peters PHM, Berglund G, Hallmans G, Lund E, Skeie J, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 2003;361:1496–1501
- Bhatty RS. Nutritional composition of whole flaxseed and flaxseed meal. In: Cunnane SC, Thompson LH, eds. Flaxseed in human nutrition. AOCS Press, Champaign, 1995; pp 22–45
- 22. Bjrok S, Kapur A, King H, Nair J, Ramachandran A. Global policy: aspects of diabetes in India. Health Policy 2003; 66:61–72.
- 23. Bilek AE, Turhan S. Enhancement of the nutritional status of beef patties by adding flaxseed flour. Meat Sci 2009;82:472–7.
- Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, Norat T, Clavel-Chapelon F, et al. European Prospective Investigation into Cancer and Nutrition Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 2003;361:1496–1501.
- Aguiar ACD, Boroski M, Monteiro ARG, Souza NED, Visentainer JV. Enrichment of whole wheat flaxseed bread with flaxseed oil. J Food Process Preserv 2011; 35:605–9.
- Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci 2007; 44(5–6):483–525