ORIGINAL ARTICLE

Cinacalcet HCL for Treatment of Secondary Hyperparathyroidism (SHPT) in Hemodialysis Patients: A Single Centre Experience

MANSOOR ABBAS QAISAR¹, MUHAMMAD NADEEM², FATEH SHER CHATTAH³, ZARMINA ROOP⁴, MUHAMMAD MUJTABA HASHIR⁵, BUSHRA IQBAL⁶

¹Nephrology Specialist, Diaverum, Hail KSA,

²Nephrology Specialist, King Fahad Central Hospital Gizan, KSA,

³Senior Registrar Nephrology, Prince Sultan Military Hospital, Riyadh KSA,

⁴Postgraduate Resident, Department of Microbiology, AFIP, Rawalpindi,

⁵Assistant Professor of Medicine, Multan Medical & Dental College/lbn-e-Siena Hospital Multan, Pakistan

⁶Medical Resident, King Fahad Central Hospital Gizan, KSA

Correspondence to Dr. Muhammad Mujtaba Hashir, email: drmmhashir@gmail.com Mobile: +923006304511

ABSTRACT

Background: The use of Cinacalcet in hemodialysis patients to treat SHPT has recently been started in Pakistan. Cinacalcet can cause imbalance in Ca and PO4 homeostasis and K/DOQI guidelines suggest regular monitoring of iPTH, Ca and PO4 levels in dialysis patients especially those who are on cinacalcet.

Aim: To determine the effectiveness of Cinacalcet treatment in SHPT.

Methods: Total 34 SHP The modialysis patients were enrolled from dialysis unit of a tertiary care hospital in KSA. All patients received cinacalcet treatment; however three of them refused to continue because of persistent vomiting. The baseline and follow up data collected from 31 patients were analyzed.

Results: The mean age of patients was 50±19 years; and frequency of males and females was 68% and 32%, respectively. Baseline mean iPTH level was decreased from 1068 to 841 pg/ml (p=0.041) with an overall20.0% reduction rate; frequency of patients with iPTH levels (>600 pg/ml) was decreased (96.8 vs. 77.4%, p=0.041);and total 77.4%patientscould achieve at least 30% reduction in baseline iPTH level. Mean PO4 level was decreased from 5.39to 5.01 mg/dl (p=0.021); mean Albumin increased from 3.72to 3.77 g/dl (p=0.754)

Conclusion: Cinacalcet HCL therapy effectively treated secondary hyperparathyroidism in hemodialysis patients and maintained their serum iPTH, Ca and PO4 levels within target range

Key words: Hemodialysis, Secondary hyperparathyroidism, Cinacalcet, Hyperphosphatemia, Hypocalcaemia

INTRODUCTION

Chronic kidney disease (CKD) is characterized by fall in renal function below normal.1 The risk factors and causes of CKD include being elderly, family history of disease, ethnicity, diabetes mellitus, hypertension, vascular disease.² As in early stages of CKD, less phosphate (PO₄) is excreted but its serum levels do not rise above normal due to increased secretion of parathyroid hormone (PTH).3 However, in advanced stages of CKD, decreased renal hyperphosphatemia4. function results in hyperphosphatemia does not convert inactive vitamin D to its active form that affects intestinal absorption of calcium (Ca) and results in hypocalcaemia.5 Hyperphosphatemia also affects Ca levels by increased Ca-PO₄ binding.6 Secondary hyperparathyroidism (SHPT) is one of the complications of CKD.7 As PTH function is to increase serum Ca level; so, when Ca level drops, biologically active form of PTH i.e., intact parathyroid hormone (iPTH) is secreted8. Thus, hyperphosphatemia and hypocalcaemia independently trigger synthesis and secretion of PTH9.

Cinacalcet HCL drug used to treat SHPT in CKD patients on hemodialysis also affects their serum Ca and PO4 levels. 10 Whereas National Kidney Foundation K/DOQI guidelines suggest regular monitoring of iPTH, Ca and PO4 levels of CKD patients 11, therefore the study was aimed to determine the effectiveness of cinacalcet treatment in secondary hyperparathyroidism in patients on hemodialysis.

Received on 21-05-2019 Accepted on 29-11-2019

MATERIALS AND METHODS

The participation of subjects in the study was absolutely on volunteer basis. All eligible patients were explained about the purpose, possible hazards and benefits of the study. Those who showed willingness to participate in the study and given informed written consent were enrolled. A quasi experimental study was conducted ata tertiary care hospital located in Southwest area of KSA during October 2018 to April 2019.

Total 34 SHPT patients with CKD on hemodialysis, age≥18 years, both males and females were enrolled by using non-probability purposive sampling method were included. Three patients were later on dropped from the study as they refused to continue cinacalcet therapy due to persistent vomiting.

Treatment and effectiveness of the starting dose of cinacalcet HCL was 30 mg at a frequency of three times per week (at the end of dialysis session). The dose was gradually increased upto 120 mg per day (depending upon the iPTH, Ca and Po4 levels)till the end of study (up to six months). The efficacy of treatment was assessed by at least 30% reduction in serum iPTH level from baseline level

Venous blood specimen was collected and allowed to clot. Then, the clotted blood was centrifuged at 5000 RPM for 10 minutes to separate serum sample. The level of intact parathyroid hormone (iPTH) was estimated by chemiluminescent microparticle immuno assay (CMIA) method¹². Normal PTH level ranged from 150-600 pg/ml.Serum calcium level was estimated by NM-BAPTA method¹³. Normal Ca level ranged from 8.4-10.0 mg/dl.

Serum phosphate level was estimated by Molybdate UV method¹⁴. Normal phosphate level ranged from 2.5-5.5 mg/dl. Serum albumin level was estimated by bromcresol green (BCG) method¹⁵. Normal Albumin level ranged from 3.5-5.0 g/dl.

After taking informed written consent, all eligible patients were included. A close ended interviewer administered questionnaire was used to record primary and secondary data. The demographic characteristics of the patients such as age and gender were investigated by interview. Whereas, the clinical data were obtained from patients' files. The baseline data upon enrollment in the study and follow up data after 3 & 6 months of cinacalcet HCL treatment were collected.

Data were entered and analyzed by using SPSS version 22. Categorical variables were presented as number (percentage) and numerical variables as mean (standard deviation). Chi square test and ANOVA were used to find the differences between biochemical assays measured before and after cinacalcet therapy. P-value ≤0.05 was considered significant.

RESULTS

The mean age of the patients was 50±19 years. Genderwise frequency showed that 68% patients were male and 32% female. Comparison of means revealed that baseline mean iPTH, PO4 and Ca levels were significantly improved at the end of treatment. Baseline mean iPTH level was significantly decreased from 1068to 841 pg/ml at 20.0% reduction rate. There were total 17.2% patients who achieved at least 30% reduction in baseline serum iPTH level. Mean PO4 level was also significantly decreased from 5.39to 5.01mg/dl. Whereas, mean Ca level was increased from 8.74to 9.05mg/dl (Patients who developed transient hypocalcemia were treated with Calcium Carbonate 600mg twice daily ,two hours away from meals) and mean albumin increased from 3.72 to 3.77g/dl (Table 1).

Table 1: Mean reduction in biochemical assays before and after treatment

Variable	Baseline (n=31)	3M F/up (n=31)	6M F/up (n=31)	p- value
iPTH* (pg/ml)	1068±387	916±348	841±322	0.041
PO ^{4*} (mg/dl)	5.39±0.55	4.96±0.66	5.01±0.73	0.021
Ca*(mg/dl)	8.74±0.70	9.02±0.48	9.05±0.33	0.040
Alb* (g/dl)	3.72±0.34	3.73±0.22	3.77±0.22	0.754

*Ca: Calcium; PO4: inorganic Phosphate; Alb: Albumin, iPTH: intact Parathyroid hormone.

The baseline frequency of patients having elevated iPTH levels (>600pg/ml) was96.8% which was significantly decreased to 77.4% at the end of study. The baseline frequency of patients with hyperphosphatemia was also significantly decreased from 48.4 to 22.6%. The baseline frequency of patients with hypocalcaemia was gradually improved by decreasing from 35.5 to6.5%patientsat 6 months follow up (p=0.012). The baseline frequency of patients with hypoalbuminemia was decreased from 16.1 to 3.2% patients but the change was not significant (Table 2).

Table 2: Frequency comparison of patients' status before and after treatment

treatment				
Variable	Baseline	3M F/up	6M F/up	p-
	(n=31)	(n=31)	(n=31)	value
iPTH* (pg/ml)				
High(>600)	30(96.8%)	25(80.6%)	24(77.4%)	0.041
Normal(150- 600)	01(3.2%)	06(19.4%)	07(22.6%)	
PO4* (mg/dl)				
High(>5.5)	15(48.4%)	05(16.1%)	07(22.6%)	0.014
Normal(2.5-5.5)	16(51.6%)	26(83.9%)	24(77.4%)	
Ca*(mg/dl)				
Low(<8.4)	11(35.5%)	05(16.1%)	02(6.5%)	0.012
Normal(8.4-10)	20(64.5%)	26(83.9%)	29(93.5%)	
Alb* (g/dl)				
Low(<3.5)	05(16.1%)	01(3.2%)	01(3.2%)	1.000
Normal(3.5-5.0)	26(83.9%)	30(96.8%)	30(96.8%)	

*Ca: Calcium; PO4: inorganic Phosphate; Alb: Albumin; iPTH: intact Parathyroid hormone.

DISCUSSION

Several studies evaluated the efficacy and safety of cinacalcet therapy and reported significant decrease in mean iPTH level from baseline with at least 30% reduction rate. Choulwar et al. reported that mean iPTH level was decreased from 404 to 304pg/mlat24% reduction rate after treatment with cinacalcet HCL.¹⁶ Similarly, Aggarwal et al. also reported decrease in mean basal PTH level from 482to 246pg/mlat 43% reduction rate at the end of treatment¹⁷. Among SHPT patients with CKD but not on hemodialysis, Perez-Ricart et al. reported mean iPTH level was decreased from 400 to 224pg/ml at 38% reductionrate. Moreover, total 67% patients achieved at least 30% reduction in their PTH levels. 18 Similar significant decrease in mean iPTH level from 1068to 841pg/ml at 20% reduction rate was observed in present study. But comparison with other studies revealed that obtained reduction rate was markedly lower than the rates reported by other studies. 16-19 Noteworthy, mean iPTH levels, both before and after treatment, calculated in the study were much higher than initial mean iPTH level of other studies; and only 17.2% patients could achieve at least 30% reduction in serum iPTH level.

and Hypocalcaemia hyperphosphatemia consequences of CKD and frequently present in dialysis patients²⁰. Also, cinacalcet therapy of SHPT in CKD patients on dialysis decreases serum iPTH, Ca and PO4 levels¹⁰ and require their regular monitoring¹¹. Choulwar et al. reported that mean Ca level was decreased from 8.83 to 8.07 mg/dL at 8.6% reduction rate. 16 Similarly, Perez-Ricart et a. also reported decrease in baseline mean Ca level from 9.73 to 9.18mg/dl; but increase in mean PO4 from 3.81to 4.32mg/dl¹⁸. Opposite to the findings from Perez-Ricart, significant decrease was observed in mean PO4 level from 5.39 to 5.01mg/dl in the study. Surprisingly mean Ca level was significantly increased from 8.74 to 9.05 mg/dl; and baseline frequency of normocalcaemic patients was also increased gradually from 64.5 to 93.5% patients at the end of treatment which was contrary to the trend reported by Choulwar. Hypoalbuminemia is also common in dialysis patients due to the loss of protein.²¹ Perez-Ricart also reported decrease in baseline mean albumin from 4.20

to 4.17 g/dl¹⁸. But an insignificant increase in mean albumin from 3.72 to 3.77 g/dl was observed in the present study. However, it was consistent with the findings of Valle et al. who also reported insignificant increase in baseline mean albumin from 3.9 to 4.0 g/dl²².

CONCLUSION

Cinacalcet HCL therapy effectively treated secondary hyperparathyroidism patients with chronic kidney disease on hemodialysis and maintained their serum iPTH, Ca and PO4 levels within target range. The patients who develop transient hypocalcemia can easily be treated with calcium carbonate to counter the hypocalcemic side effect of Cinacalcet.

REFERENCES

- Definition and classification of CKD. Kidney Int Suppl (2011). 2013;3(1):19-62.
- Damtie S, Biadgo B, Baynes HW, Ambachew S, Melak T, Asmelash D, et al. Chronic kidney disease and associated risk factors assessment among diabetes mellitus patients at a tertiary hospital, Northwest Ethiopia. Ethiop J Health Sci 2018;28(6):691-700.
- Craver L, Marco MP, Martinez I, Rue M, Borras M, Martin ML, et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5 achievement of K/DOQI target ranges. Nephrol Dial Transplant 2007;22(4):1171-1176.
- Qunibi WY, Nolan CR. Treatment of hyperphosphatemia in patients with chronic kidney disease on maintenance hemodialysis: results of the CARE study. Kidney Int Suppl 2004;(90):S33-S38.
- Yuen NK, Ananthakrishnan S, Campbell MJ. Hyperparathyroidism of Renal Disease. Perm J 2016 Summer; 20(3):15-127.
- Block GA, Port FK: Calcium phosphate metabolism and cardiovascular disease in patients with chronic kidney disease. Sem Dialysis 2003;16:140-147.
- Friedman EA: Consequences and management of hyperphosphatemia in patients with renal insufficiency. Kidney Int 2005;65 (Suppl.):S1-S7.
- 8. Moe SM. Disorders involving calcium, phosphorus, and magnesium. Prim Care 2008;35(2):215-7.
- Saliba W, El-Haddad B. Secondary hyperparathyroidism: pathophysiology and treatment. J Am Board Fam Med 2009;22(5):574-581.
- Palmer SC, Nistor I, Craig JC, Pellegrini F, Messa P, Tonelli M, et al. Cinacalcet in patients with chronic kidney disease: a

- cumulative meta-analysis of randomized controlled trials. PLoS Med 2013;10(4):e1001436.
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39(Suppl 1):S1-S266.
- Kakuta T, Ishida M, Fukagawa M. Critical Governance Issue of Parathyroid Hormone Assays and its Selection in the Management of Chronic Kidney Disease Mineral and Bone Disorders. Ther Apher Dial 2018;22(3):220-28.
- Bourguignon C, Dupuy AM, Coste T, Michel F, Cristol JP. Evaluation of NM-BAPTA method for plasma total calcium measurement on Cobas 8000 ®. Clin Biochem 2014;47(7-8):636-9.
- Amador E, Urban J. Simplified serum phosphorus analysis by continuous flow spectrophotometry. Clin Chem 1972;18:601-
- Dumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green 1971. Clin Chim Acta 1997;258(1):21-30.
- Choulwar AK, Mungantiwar AA, Chintamaneni M. Comparison of efficacy and safety of Cinacalcet versus Calcitriol in patients of secondary hyperparathyroidism in Indian population. J Pharm Res 2012;5(1):38-42.
- Aggarwal HK, Jain D, Kaverappa V, Kaushik S, Yadav S. Role of cinacalcet in the treatment of secondary hyperparathyroidism in chronic kidney disease. RusOM J2013;2:0309.
- Perez-Ricart A, Galicia-Basart M, Alcalde-Rodrigo M, Segarra-Medrano A, Sune-Negre JM, Montoro-Ronsano JB. Effectiveness of cinacalcet in patients with chronic kidney disease and secondary. hyperparathyroidism not receiving dialysis. PLoS One 2016;11(9):e0161527
- Mei C, Chen N, Ding X, Yu X, Wang L, Qian J, et al. Efficacy and safety of cinacalcet on secondary hyperparathyroidism in Chinese chronic kidney disease patients receiving hemodialysis. Hemodial Int 2016;20(4):589-600
- Setiani Agus L, Effendi I, Abdillah S. Influence of the use of phosphate binders on serum levels of calcium phosphate in patients with chronic kidney disease undergoing hemodialysis: A retrospective and prospective study. Saudi Pharm J. 2014;22(4):333-7.
- Cueto Manzano AM. Hypoalbuminemia in dialysis. Is it a marker for malnutrition or inflammation? Rev Invest Clin 2001;53(2):152-8.
- Valle C, Rodriguez M, Santamaria R, Almaden Y, Rodriguez ME, Canadillas S, et al. Cinacalcet reduces the set point of the PTH-calcium curve. J Am Soc Nephrol 2008;19(12):2430-6.