ORIGINAL ARTICLE

Effect of Helicobacter Pylori Infection on Hemoglobin, MCV, and Vitamin B₁₂

SAQIB SOHAIL, HAMID JAVAID QURESHI*, SAJID NISAR**

ABSTRACT

Objective: The objective of this study was to elucidate effect of H. pylori infection on serum vitamin B_{12} levels and to find out association of this effect with changes in red blood indices in our local population.

Subjects and methods: A total number of 90 subjects were included in the study. They were divided into group A (30 subjects with gastric symptoms and *H. pylori* infection), group B (30 subjects with gastric symptoms but without *H. pylori* infection), and group C (30 normal healthy age and sex matched subjects). The subjects were between 15-60 years of age. *H. pylori* infection was considered positive on the basis of positive serology, rapid urease test and histopathological examination. Hemoglobin and MCV were estimated by automated hematology analyzer. Serum vitamin B₁₂ levels were measured by chemilumisecne technique. Intrinsic factor antibodies were determined by ELISA.

Results: There was no significant difference (p value > 0.05) of hemoglobin concentration between groups A, B, and C. MCV values did not show significant difference (p value > 0.05) between groups A, B, and C. The difference of serum vitamin B_{12} among groups A, B, and C was also non significant (p value > 0.05).

Conclusion: *H. pylori* infection was not found to cause any significant changes in hemoglobin and MCV. This infection did not produce significant effect on vitamin B₁₂ levels in the subjects studied.

Key words: MCV- Mean corpuscular volume, H. pylori- Helicobacter pylori

INTRODUCTION

Red blood cells are an important component of cellular portion of the blood. ¹ Red blood cells do not contain usual cell organelles and are without nucleus, so they can not divide and synthesize structural proteins and enzymes. The energy demands are also very low. The red blood cells derive energy from anaerobic glycolysis and hexose monophosphate pathway. Due to these features, the life span of red blood is relatively short and is only 120 days².

Red blood cell synthesis is regulated by many factors, of which erythropoietin³, vitamin B_{12} , folic acid, iron¹, and vitamin C^4 are especially important. Of these factors, vitamin B_{12} is especially important for maturation of red blood cells. Deficiency of vitamin B_{12} results in the production of immature red blood cells called macrocytes. This immature production of red blood cells results from defective DNA synthesis^{1,3}.

Malabsorption plays a major role in the development of different nutritional deficiencies. In this regard, stomach plays very important role especially with respect to vitamin B_{12} . Deficiency of vitamin B_{12} mostly results from gastrointestinal

Department of Physiology, Lahore Medical & Dental College,

Correspondence to Dr. Saqib Sohail, Senior Lecturer, Email drsska@yahoo.com

diseases and gastric surgery that impair secretion of intrinsic factor from parietal cells of the gastric glands. Major problems of the stomach include gastritis that leads to the development of peptic ulcers, gastric lymphomas, and gastric cancers. It has been reported that the most common cause of gastric problems is Helicobacter pylori. The human stomach is regarded as the principal host and reservoir of *Helicobacter pylori*^{5,6} *Helicobacter pylori* usually get entry in the human stomach in early childhood. Upon exposure to appropriate host and environmental factor, Helicobacter pylori produce low grade inflammatory changes in the gastric mucosa that finally lead to either antral gastritis or pangastritis. These changes result development of duodenal and gastric ulcers. It is reported that Helicobacter pylori affects red blood cells by causing extragastric complications like vitamin B₁₂ deficiency⁵⁻⁸

Helicobacter pylori is an organism that is reported to cause deficiency of vitamin B₁₂ by producing gastritis and peptic disease which results in malabsorption of vitamin B₁₂. The exact mechanism of *H. pylori* induced vitamin B₁₂ deficiency is not known but the suggested mechanisms are that *H. pylori* first produces either achlorhydria or decreases the hydrochloric acid content of the gastric juice by diminishing secretion of

^{*}Department of Physiology and Medicine, Services Institute of Medical Sciences

hydrochloric acid (HCI) from the parietal cells of the gastric glands. ¹⁰ Secondly, *H. pylori* neutralizes gastric acidity by producing ammonia from the breakdown of urea that is required for separating vitamin B_{12} from the dietary sources. ¹¹ Thirdly, *H. pylori* also cause decreased secretion of the pepsin (a proteolytic enzyme) from the chief (zymogenic) cells of the gastric glands. The above mentioned three factors are necessary for release of vitamin B_{12} from the food. ^{10, 11} Fourthly, *H. pylori* decreases the release of intrinsic factor from the parietal cells of the gastric glands by causing their destruction that is a necessary factor for the absorption of vitamin B_{12} from the small intestine ^{9,12,13}

Different results have been reported about the effects of *Helicobacter pylori* infection on vitamin B₁₂. The present study was planned to elucidate the effects of *H. pylori* infection on serum vitamin B₁₂ deficiency and its associated megaloblastic anemia.

MATERIALS AND METHODS

It was a cross sectional analytical study conducted at University of Health Sciences, Lahore. Subjects having Helicobacter pylori infection with gastric symptoms and subjects having gastric symptoms without this infection were selected from the Services Hospital, Lahore. Ninety subjects including both male and female were selected for the study. The subjects were between 15-60 years of age. They were divided into three groups. Each group comprised of thirty subjects. In group 1 subjects having history of gastric symptoms and positive Helicobacter pylori infection after determining serum Helicobacter antibodies quantitatively and by carrying out biopsy based rapid urease test and histopathological examination were included in this group. Grroup 2. This group was composed of subjects with history of symptoms without Helicobacter pylori infection. In group 3, age and sex matched healthy subjects without gastric symptoms and Helicobacter pylori infection were included.

Subjects having gastric symptoms for more than one year and Helicobacter pylori infection were included in the study. Subjects included were not receiving antacids for four weeks before the sample collection. Subjects of both sexes between ages 15 and 60 years were enrolled for the study.

Subjects with history of bleeding ulcer, menorrhagia, fever, blood transfusion, iron or vitamin B_{12} supplement intake, pregnancy and gastric surgery were excluded. Subjects having intrinsic factor antibodies in their serum were also excluded. **Methods:** An informed consent and detailed history was taken from all the subjects after explaining the study purpose and procedure. Clinical examination was also carried out. Gastric biopsy samples were

collected from the subjects having symptoms of gastric disease through gastric endoscopy for the confirmation of Helicobacter pylori infection on the basis of rapid urease test and histopathological examination. Six milliliters of blood was drawn from antecubital vein under aseptic measures. Two milliliter of blood was taken in an EDTA tube for hemoglobin and MCV. Remaining four milliliter of blood was taken in a plain tube and was centrifuged at 5000 rpm for 10 minutes. Serum was separated and stored at -80°C for estimation of serum H. pylori IgG antibodies, serum vitamin B₁₂, and intrinsic factor antibodies. Hemoglobin and MCV were estimated by automated hematology analyzer. Serum vitamin B₁₂ levels were measured by chemilumisecne technique. Intrinsic factor antibodies were determined by ELISA.

Arithmetic mean and standard deviation of all the quantitative variables like serum vitamin B_{12} , hemoglobin and MCV was determined. One way ANOVA was applied to determine the significance of difference of variables between groups. p value of less than 0.05 was considered statistically significant.

RESULTS

The difference of Mean \pm SD age in three groups was non-significant (p > 0.05). In group A, there were 18 males and 12 females while in group B, 16 males and 14 females. In group C, males and females were 14 and 16 respectively. (Table 1) Heaviness in epigartrum, pain epigartrum, retosternal distress and fullness after meal were common gastric symptoms in groups A and B. (Table 2). There was no significant difference (p>0.05) in hemoglobin concentration between groups A, B and C (Fig 10). The difference of MCV values between three groups was non significant (Table 3). There was no difference significant in serum vitamin B12 concentration (Fig. 2) between groups A, B and group C (Table 4).

Table 1 Age and sex distribution in groups A, B & C

Parameter	Group A (n = 30)	Group B (n = 30)	Group C (n = 30)
Age (Years)	32.87 <u>+</u> 12.31	33.27 <u>+</u> 11.64	33.60 <u>+</u> 11.12
Male	18	16	14
Female	12	14	16

Table 2 Comparison of gastric symptoms in groups A & B

Symptoms	Group A	Group B
Pain epigastrium	24	26
Retrosternal discomfort	22	27
Epigastric heaviness	30	30
Bloating	17	12
Fullness after meals	21	25
Generalized Weakness	15	18
Vomiting	08	11

ORIGINAL ARTICLE

Table 3 Comparison of red blood cell indices between groups A, B and C

Parameter	Group A (n=30)	Group B (n=30)	Group C (n=30)	ANOVA p value
Hemoglobin (g/dl)	14.86 <u>+</u> 1.04	14.25 <u>+</u> 1.36	14.86 <u>+</u> .974	.06*
MCV (fl)	86.45 <u>+</u> 6.47	88.86 <u>+</u> 6.25	87.14 <u>+</u> 6.46	.32*

^{*}Non- significant

Table 4 Comparison of serum B₁₂ between groups A, B and C

Parameter	Group A n =30	Group B n =30	Group C n =30	ANOVA p value
Serum Vitamin B ₁₂ (pmol/l)	288.1 <u>+</u> 160.1	262.5 <u>+</u> 130.8	261.8 <u>+</u> 135.4	.71*

Non-significant

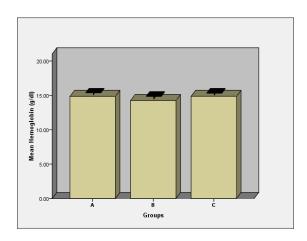


Fig.1 Hemoglobin concentration in groups A, B and C

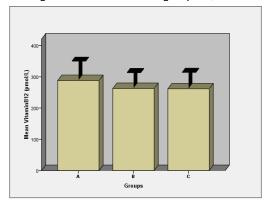


Fig.2 Serum Vitamin B₁₂ in groups A, B and C

DISCUSSION

Helicobacter pylori infection is regarded as one of the most common infections all over the World and is labeled as the major cause of gastritis and peptic ulcer disease in the patients. It is also suggested to be associated with extra- gastric complications like iron deficiency, vitamin B₁₂ deficiency, and ischemic heart disease. ^{11, 14} Red blood cells are among the most important cells of the body due to their potential role in oxygen and carbon dioxide transport. Vitamin B₁₂ is necessary for the red blood cell maturation^{2,15}. The deficiency of vitamin B₁₂ results in megaloblastic anemia due to defective DNA synthesis^{1,16}.

Helicobacter pylori cause deficiency of vitamin B_{12} by producing gastritis and peptic disease which

results in malabsorption of vitamin B_{12} . 9 H. pylori does this by producing either achlorhydria or decreasing the hydrochloric acid content of the gastric juice 10 and by neutralizing the gastric acidity by producing ammonia from the breakdown of urea that is required for separating vitamin B_{12} from the dietary sources 14 . H. pylori also decreases the release of intrinsic factor from the parietal cells of the gastric glands by causing their destruction that is a necessary for the absorption of vitamin B_{12} from the small intestine 9,12,13 .

Controversial picture is also present in literature about the vitamin B_{12} status in *Helicobacter pylori* infected cases. Kaptan *et al.*, (2000) reported low vitamin B_{12} levels in patients having helicobacter pylori infection¹⁷. Similarly, Serin *et al.*, (2002) found that *Helicobacter pylori* infection had significant effect on vitamin B_{12} level¹⁸. Akcam *et al.*, (2007) reported that effect of *Helicobacter pylori* infection was not significant on both vitamin B_{12} levels and serum ferritin levels¹⁹.

Some studies documented no association between Helicobacter pylori infection and vitamin B₁₂ deficiency in elderly people^{20,22}. In patients having microcytic anemia, no difference was observed in red blood cell parameters of patients with or without Helicobacter pylori infection²³. Many case control reports also documented no relationship between B₁₂ deficiency and *Helicobacter pylori* infection^{24,25} Helicobacter pylori infection has not been suggested as the cause of B₁₂ deficiency in alcoholic patients also²⁶. No relationship was observed by the Rogers between Helicobacter pylori, (2003)inflammatory changes, degree of gastritis and deficiency of vitamin B_{12} levels²⁷. The present study revealed no significant difference of vitamin B₁₂ levels among the three groups. No significant effect of Helicobacter pylori infection on serum vitamin B₁₂ levels was observed in the patients. Similarly, Helicobacter pylori was not found to affect hemoglobin and MCV.

CONCLUSION

It is concluded that *Helicobacter pylori* has no significant effect on vitamin B_{12} level and *H. pylori* infection is not the cause of vitamin B_{12} deficiency. Moreover, there is no significant change in

hemoglobin concentration and MCV levels in patients having *Helicobacter pylori* infection.

REFERENCES

- Guyton AC, Hall JE. Text book of Medical Physiology. 12th ed. Mississippi: *Elsevier*. 2005.
- Murray RK. Red and white blood cells. In: Murray RK, Granner DK, Rodwell VW, eds. Harper's illustrated Biochemistry. United States: McGraw Hill. 2006.
- Elliot S. Erythropoiesis- stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol. 2008; 154:529-41.
- Annibale B , Marignaani M, Monarca B, Antonelli G , Marceggiano A ,Martino G, Berg G, Bode G, Blettner M, Boeing H, Brenner H Concomitant alternation in intragastric pH and ascorbic acid concentration in patients with *Helicobacter pylori* gastritis and associated iron deficiency anemia. *Gut* 2003; 52:496.
- Pietroiusti A, Galante A, Magrini A, Bergamaschi A. Helicobacter pylori interference with micronutrients and orally administered drugs: a new mechanism explaining its role in extra gastric disorders. Mini Rev Med Chem. 2008; 8:135-41.
- Kuipers EJ, B MJ. Acid peptic disease: Epidemiology and Pathobiology. In: Goldman L, Ausiello D, eds. Cecil Medicine. 23rd ed. Philadelphia: Elsevier. 2007: 1009-13.
- Palmer KR, Penman ID, Paterson- Brown S. Alimentary Tract and Pancreatic Diseases. In: Boon NA, Colledge NR, Walker BR, Hunter JAA, eds. Davidson's Principles and Practice of Medicine. 20th ed. London. Elsevier. 2005: 849-934.
- Kumar P, Clark M. Kumar and Clark's Clinical Medicine. 7th ed. London: WB Saunders. 2002:253-334.
- Lechner K, Fodinger M, Grisold W, Puspok A, Sillaber C. Vitamin B₁₂ deficiency. New data on an old theme. Wien Klin Wochenschr. 2005; 117:579-91.
- El-Omar EM, Oien K, El-Nujumi A, Gillen D, Wirz A, Dahill S, Williams C, Ardill JE, McColl KE. *Helicobacter pylori* infection and chronic gastric acid hyposecration. *Gastroenterology* 1997; 113:15-24.
- Salgueiro J, Zubillaga M, Goldman C, Barrado A, Martinez Sarrasague M, Leonardi N, Boccio J. Is there a link between micronutrient malnutrition and Helicobacter pylori? Aliment Pharmacol Ther. 2004; 20:1029-34.
- Dierkes J, Ebertb M, Malfertheinerb P, Luleya C. Helicobacter pylori Infection, vitamin B₁₂ and Homocysteine. Dig Dis. 2003; 21:237–44.
- Carmel R. Cobalamin, the stomach and aging. Am J Clin Nutr. 1997; 66:750–59.
- Konturek SJ, Konturek PC, Pieniazek P, Bielanski W. Role of *Helicobacter pylori* infection in extragastroduodenal disorders: introductions remarks. *J Physiol Pharmacol.* 1999; 50:683–94.

- Higgs DR, Wood WG. Erythropoiesis. In: A. Victor Hoffbrand, Daniel Catovsky, Edward G.D. Tuddenham, eds. Postgraduate Haematology. 28th ed. United Kingdom: Blackwell Publishing. 2005:13-25.
- 16. Aisen P, Wessling-resnick M, Leibold EA. Iron metabolism. *Curr Opin Chem Biol.* 1999; 3:200-6.
- Kaptan K, Beyan C, Ural AU, Cetin T, Avcu F, Gülşen M, Finci R, Yalçın A. Helicobacter pylori is it a novel causative agent in vitamin B₁₂ deficiency. Arch Intern Med 2000: 160:1349–53.
- Serin E, Gumurdulu Y, Ozer B, Kayaselcuk F, Yilmaz U, Kocak R. Impact of Helicobacter pylori on the development of vitamin B₁₂ deficiency in the absence of gastric atrophy. Helicobacter 2002; 7:33–41.
- Akcam M, Ozdem S, Yilmaz A, Gultekin M, Artan R. Serum ferritin, vitamin B₁₂, folate, and zine levels in children infected with *Helicobacter Pylori*. *Dig Dis Sci* 2007; 52:405–10.
- Van Asselt DZ, de Groot LC, van Staveren WA, Blom HJ, Wevers RA, Biemond I, Hoefnagels WH. Role of cobalamin intake and atrophic gastritis in mild cobalamin deficiency in older Dutch subjects. Am J Clin Nutr 1998; 68:328–334.
- Cenerelli S, Bonazzi P, Galeazzi R, Testa I, Bonfigli AR, Sirolla C, Giunta S, Galeazzi L, Fumelli D, Testa R. Helicobacter pylori masks differences in homocysteine plasma levels between controls and type 2 diabetic patients. Eur J Clin Invest 2002; 32:158–62.
- Andres E, Noel E, Kaltenbach G, Perrin AE, Vinzio S, Goichot B, Schlienger JL, Blickle JF. Vitamin B₁₂ deficiency with normal Schilling test or nondissociation of vitamin B₁₂ and its carrier proteins in elderly patients. A study of 60 patients (in French). Rev Méd Interne 2003; 24:218–23.
- Marignani M, Delle Fave G, Mecarocci S, Bordi C, Angeletti S, D'Ambra G, Aprile MR, Corleto VD, Monarca B, Annibale B. High prevalence of atrophic body gastritis in patients with unexplained microcytic and macrocytic anaemia: a prospective screening study. Am J Gastroenterol 1999; 94:766–72.
- Fong TL, Dooley CP, Dehesa M, Cohen H, Carmel R, Fitzgibbons PL, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection in pernicious anemia: A prospective controlled study. Gastroenterology.1991; 100:328–32.
- Haruma K, Komoto K, Kawaguchi H, Okamoto S, Yoshihara M, Sumii K, Kajiyama G. Pernicious anaemia and *Helicobacter pylori* infection in Japan: Evaluation in a country with a high prevalence of infection. Am J Gastroenterol.1995; 90:1107–10.
- van Oijen MG, Laheij RJ, de Jong CA, Peters WH, Jansen JB. Vitamin B₁₂ status and its association with Helicobacter pylori infection in alcohol dependent patients. J Nutr Sci Vitaminol. 2004; 50:305-8.
- Rogers LM, Boy E, Miller JW, Green R, Rodriguez M, Chew F, Allen LH. Predictors of cobalamin deficiency in Guatemalan school children. Diet, Helicobacter pylori, or bacterial overgrowth? J Pediatr Gastroenterol Nutr. 2003; 36:27-36.